tìm nghiệm của PT
\(\sqrt{x^2-9}+\sqrt{x-3}=0\)
tìm số nghiệm của pt \(x^3+\sqrt[]{x^2-9}=\sqrt[]{9-x^2}+27\)
ĐKXĐ: \(x=\pm3\)
Nếu \(x=3\), phương trình tương đương
\(x^3+\sqrt{x^2-9}-\sqrt{9-x^2}-27=0\)
\(\Leftrightarrow0=0\)
\(\Rightarrow x=3\) là nghiệm của phương trình
Nếu \(x=-3\), phương trình tương đương
\(x^3+\sqrt{x^2-9}-\sqrt{9-x^2}-27=0\)
\(\Leftrightarrow-54=0\)
\(\Rightarrow x=-3\) không phải là nghiệm của phương trình
Vậy ...
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 1 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 2 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 3 nghiệm phân biệt
ĐKXĐ: \(x\ge0\)
\(\left(x^2-x-m\right)\sqrt{x}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)
Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm
Do đó:
a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm
\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)
b. Để pt có 2 nghiệm pb
TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0
\(\Leftrightarrow m=0\)
TH2: (1) có 2 nghiệm trái dấu
\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)
\(\Rightarrow m\ge0\)
c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)
Chứng minh rằng x=\(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)là nghiệm của pt \(x^5-3x-18=0.\)Từ đó tìm x
Đặt \(a=\sqrt[3]{9+4\sqrt{5}},b=\sqrt[3]{9-4\sqrt{5}}\)
\(\Rightarrow\hept{\begin{cases}a+b=x\\ab=1\end{cases}}\)
Ta có: \(x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Rightarrow x^3=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3.1.x\)
\(\Leftrightarrow x^3=18+3x\)
\(\Leftrightarrow x^3-3x-18=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+6\right)=0\)
Vì \(x^2+3x+6=\left(x+\frac{3}{2}\right)^2+\frac{15}{4}>0\)
\(\Rightarrow x-3=0\Leftrightarrow x=3\)
Thay x=3 vào \(x^5-3x-18=0\), thấy không thoả mãn.
KL: Đề sai !
cho PT\(\sqrt{x^2+mx}-\sqrt{x-2}=0\) tìm các giá trị thực của m sao cho pt có 2 nghiệm x1x2 sao cho x1+x2=3(x1x2)
ĐK: \(x\ge2\)
\(pt\Leftrightarrow x^2+mx=x-2\)
\(\Leftrightarrow x^2+\left(m-1\right)x+2=0\)
Phương trình có hai nghiệm \(\Leftrightarrow\Delta=m^2-2m-7\ge0\Leftrightarrow\left[{}\begin{matrix}m\le1-2\sqrt{2}\\m\ge1+2\sqrt{2}\end{matrix}\right.\)
Theo định lí Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1.x_2=2\end{matrix}\right.\)
\(x_1+x_2=3x_1x_2\)
\(\Leftrightarrow1-m=6\)
\(\Leftrightarrow m=-5\left(tm\right)\)
Tìm các số hữu tỉ a,b sao cho x=$\sqrt{2}$+1/$\sqrt{2}$-1 là nghiệm của pt: x^3+ax^2+bx+1=0
1. Tìm m để pt \(\left(x^2+2x\right)^2-\left(x^2+2x\right)-m=0\)
a .có 4 nghiệm pb
b. vô ng
c. có nghiệm duy nhất
d. có nghiệm
e. có nghiệm kép
2. Biết pt: \(x+\sqrt{2x+11}=0\) có nghiệm \(x=a+b\sqrt{3}\). Tính ab
HELP ME
Bài 2.
ĐK: $x\geq \frac{-11}{2}$
$x+\sqrt{2x+11}=0\Leftrightarrow x=-\sqrt{2x+11}$
\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=2x+11\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ x^2-2x-11=0(*)\end{matrix}\right.\)
\(\Delta'(*)=12\)
\(\Rightarrow x=1\pm \sqrt{12}=1\pm 2\sqrt{3}\). Với điều kiện của $x$ suy ra $x=1-2\sqrt{3}$
$\Rightarrow a=1; b=-2\Rightarrow ab=-2$
Bài 1.
Đặt $x^2+2x=t$ thì PT ban đầu trở thành:
$t^2-t-m=0(1)$
Để PT ban đầu có 4 nghiệm phân biệt thì:
Trước tiên PT(1) cần có 2 nghiệm phân biệt. Điều này xảy ra khi $\Delta (1)=1+4m>0\Leftrightarrow m> \frac{-1}{4}(*)$
Với mỗi nghiệm $t$ tìm được, thì PT $x^2+2x-t=0(2)$ cần có 2 nghiệm $x$ phân biệt.
Điều này xảy ra khi $\Delta '(2)=1+t>0\Leftrightarrow t>-1$
Vậy ta cần tìm điều kiện của $m$ để (1) có hai nghiệm $t$ phân biệt đều lớn hơn $-1$
Điều này xảy ra khi \(\left\{\begin{matrix} (t_1+1)(t_2+1)>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1t_2+t_1+t_2+1>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -m+1+1>0\\ 1+2>0\end{matrix}\right.\Leftrightarrow m< 2(**)\)
Từ $(*); (**)\Rightarrow \frac{-1}{4}< m< 2$
b)
Để pt ban đầu vô nghiệm thì PT(1) vô nghiệm hoặc có 2 nghiệm $t$ đều nhỏ hơn $-1$
PT(1) vô nghiệm khi mà $\Delta (1)=4m+1<0\Leftrightarrow m< \frac{-1}{4}$
Nếu PT(1) có nghiệm thì $t_1+t_2=1>-2$ nên 2 nghiệm $t$ không thể cùng nhỏ hơn $-1$
Vậy PT ban đầu vô nghiệm thì $m< \frac{-1}{4}$
c) Để PT ban đầu có nghiệm duy nhất thì:
\(\left\{\begin{matrix} \Delta (1)=1+4m=0\\ \Delta' (2)=1+t=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=-\frac{1}{4}\\ t=-1\end{matrix}\right.\).Mà với $m=-\frac{1}{4}$ thì $t=\frac{1}{2}$ nên hệ trên vô lý. Tức là không tồn tại $m$ để PT ban đầu có nghiệm duy nhất.
d)
Ngược lại phần b, $m\geq \frac{-1}{4}$
e)
Để PT ban đầu có nghiệm kép thì PT $(2)$ có nghiệm kép. Điều này xảy ra khi $\Delta' (2)=1+t=0\Leftrightarrow t=-1$
$t=-1\Leftrightarrow m=(-1)^2-(-1)=2$
Cho pt :\(x^4-16x^2+32=0\)
CMR x=\(\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\) là 1 nghiệm của pt
1,Tìm m để pt có \(\sqrt{2x^2+mx}=3-x\)
a, 1 nghiệm
b, 2 nghiệm phân biệt
2,Tìm m để pt có 2 nghiệm phân biệt \(\sqrt{x+2}+\sqrt{6-x}-\sqrt{\left(x+2\right)\left(6-x\right)}=m\)
cho pt : \(x^2+\sqrt{3}x-\sqrt{5}=0\)
c/m pt có 2 nghiệm \(x_1\)và \(x_2\) và tính \(\sqrt{x_1}+\sqrt{x_2}\)
Vì a*c<0
nên PT có hai nghiệm phân biệt trái dấu