cho 2.x=3.y và 21.x=3.y=114. Tìm x và y
mn cho mik cách giải ạ
Cảm ơn ạ
Tìm x và y biết :
( x - 1 )2020 + / y - 3 / = 0
Giúp mình với mn ạ
Cảm ơn mn nhiều <3
Ta có: \(\left(x-1\right)^{2020}\ge0\forall x\)
\(\left|y-3\right|\ge0\forall y\)
Do đó: \(\left(x-1\right)^{2020}+\left|y-3\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Vậy: (x,y)=(1;3)
tìm x,y biết x-5/x+4= 3/4 và x-y=-2
Cho mik cả cách giải nha
\(\frac{x-5}{x+4}=\frac{3}{4}\)
=> 4(x - 5) = 3(x + 4)
=> 4x - 20 = 3x + 12
=> x = 32
Thay x = 32 vào x - y = -2 ta được
32 - y = -2
=> y = 34
Vậy x = 32 ; y = 34
Tìm x
X/y=8/3; z/x=1/2 và x+y-2z=9
Các bạn giải nhanh giùm mik và tiện cho mik hỏi cách đổi tên trên hoc24 với, cảm ơn nhìu
x/y=8/3 =>x/8=y/3, z/x=1/2 =>x/2=z
=>x/16=y/6=z/8=x+y-2z/16+6-16=3/2=>x=3/2*16=24;y=3/2*6=9;z=3/2*8=12
Hìk như ko có cách đổi tên trên hoc24 đâu bn à
cho x,y>0 và x+y=2 tìm gtnn của (2x+1/x)2+(2y+1/y)2+2001
mik cảm ơn ạ
-Áp dụng BĐT AM-GM ta có:
\(xy\le\dfrac{\left(x+y\right)^2}{4}\Leftrightarrow xy\le\dfrac{2^2}{4}=1\)
\(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}=\dfrac{2^2}{2}=2\)
\(A=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2+2001=4x^2+4+\dfrac{1}{x^2}+4y^2+4+\dfrac{1}{y^2}+2001=4\left(x^2+y^2\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2009\ge4.2+2.\dfrac{1}{xy}+2009\ge8+2.\dfrac{1}{1}+2009=2019\)
\(A=2019\Leftrightarrow x=y=1\)
-Vậy \(A_{min}=2019\)
Cho x,y,z>0 và \(2x+4y+3z^2=68\).Tìm MinP=\(x^3+y^3+z^3\)
:< giúp em với ạ, với lại có thể cho eim xin phương pháp để giải mấy bài kiểu vậy với ạ, em cảm ơn
Đây là 1 bài toán không giải được (người ra đề đã chọn 1 con số ngẫu nhiên dẫn tới kết quả phương trình điểm rơi không thể giải)
Dự đoán điểm rơi tại \(x=a;y=b;z=c\)
\(2\left(x^3+a^3+a^3\right)\ge6a^2x\)
\(2\left(y^3+b^3+b^3\right)\ge6b^2y\)
\(z^3+z^3+c^3\ge3cz^2\)
Cộng vế:
\(2P+\left(4a^3+4b^3+c^3\right)\ge3\left(2a^2x+2b^2y+cz^2\right)\)
Ta cần tìm a, b, c sao cho:
\(\left\{{}\begin{matrix}2a+4b+3c^2=68\\\dfrac{2a^2}{2}=\dfrac{2b^2}{4}=\dfrac{c}{3}\\\end{matrix}\right.\) \(\Leftrightarrow2a+4.a\sqrt{2}+3.\left(3a^2\right)^2=68\)
\(\Leftrightarrow27a^4+\left(4\sqrt{2}+2\right)a-68=0\)
Đây là 1 pt bậc 4 không thể giải cho nên đây là 1 BĐT không thể giải.
Thông thường khi cho số liệu thì người ra đề phải tính trước các hệ số để ra 1 pt có thể giải chứ ko random kiểu ngớ ngẩn thế này
Mn ơi giúp mik bài 11 với ạ
Cảm ơn nhìu ạ tiện thể cho mik cách giải luôn nhé
Cảm ơn
1.Tìm x,y,z biết :
a)2x/3 = 3y/4 =4z/5 và x+y+z = 49
b)x/5 = y/3= và x2 - y2 =4
c)x/y+z+1 =y/z+x+1 =z/x+y-2= x+y+z
Giúp mik vs ạ , cảm ơn mn
a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)
Vậy: (x,y,z)=(18;16;20)
b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)
\(\Leftrightarrow16k^2=4\)
\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
Trường hợp 1: \(k=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)
a)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Suy ra :
\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)
b)
\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)
Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$
Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$
c)
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)
Suy ra :
\(2x=y+z+1\Leftrightarrow y+z=2x-1\)
Mặt khác :
\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(2y=x+z+1=z+\dfrac{3}{2}\)
Mà \(y+z=0\Leftrightarrow z=-y\)
nên suy ra: \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)
tìm x:
\(\frac{x-2}{12}=\frac{3}{x-2}\)
mn cho mik cách giải ạ
Càm ơn nhìu ạ
Áp dụng tính chất tỉ lệ thức, ta có:
(x-2)(x-2) = 12.3
Suy ra (x-2)(x-2) = 36 = 62 = (-6)2
Suy ra hoặc x - 2 = 6 hoặc x -2 = - 6
Vậy x thuộc tập hợp gồm các phần tử là 8 hoặc -4
mk ko ghi lại đề nha
(x-12).(x-12)=3.12
x^2-24x+144=36
x^2-24x=-108
x(x-24)=-108
TH1 x=-108
TH2 x=-84
MK ko bít có đúng k
k mk nha=3
tìm x,y thuộc N biết:
2 mụ x +80= 3 mụ y
mình biết x=0 và y=4 nhưng các bạn cho mình biết cách giải ạ
\(2^x+80=3^y \)(1)
Với x = 1 thì \(2^x+ 80 \) là số chẵn mà 3y là số lẻ
=> x<1 mà x thuộc N
=> x= 0
Thay x=0 vào (1) ta có:
20+ 80= 3y
=> 1 + 80 = 3y
=> 81 = 3y
=> 34 = 3y
=> y=4
Vậy.............