Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
2moro
Xem chi tiết
Akai Haruma
12 tháng 7 2021 lúc 22:51

Lời giải:

1.

$\widehat{MDC}=90^0$ (góc nt chắn nửa đường tròn)

$\Leftrightarrow \widehat{BDC}=90^0$

Tứ giác $ABCD$ có $\widehat{BAC}=\widehat{BDC}=90^0$ và cùng nhìn cạnh $BC$ nên là tgnt.

Do $ABCD$ nội tiếp nên $\widehat{BCA}=\widehat{BDA}$

Mà $\widehat{BDA}=\widehat{MCS}$ (do $MDSC$ nội tiếp)

$\Rightarrow \widehat{BCA}=\widehat{MCS}$

$\Rightarrow CA$ là phân giác $\widehat{BCS}$

2.

Gọi $T$ là giao điểm của $BA$ và $EM$

Xét tam giác $BTC$ có $TE\perp BC$ (do $\widehat{MEC}=90^0$) và $CA\perp BT$ và $TE, CA$ giao nhau tại $M$ nên $M$ là trực tâm tam giác $BTC$

$\Rightarrow BM\perp TC$.

Mà $BM\perp DC$ nên $TC\parallel DC$ hay $T,D,C$ thẳng hàng

Do đó $BA, EM, DC$ đồng quy tại $T$

3.

Vì $ABCD$ nt nên $\widehat{MAD}=\widehat{CAD}=\widehat{DBC}=\widehat{MBE}$

Dễ cm $BAME$ nội tiếp cho $\widehat{A}+\widehat{E}=90^0+90^0=180^0$ nên $\widehat{MBE}=\widehat{EAM}$

Do đó: $\widehat{MAD}=\widehat{EAM}$ nên $AM$ là tia phân giác $\widehat{EAM}(*)$

Mặt khác:

Cũng do $MECD,ABCD$ nội tiếp nên:

$\widehat{ADM}=\widehat{ADB}=\widehat{ACB}=\widehat{MCE}=\widehat{MDE}$

$\Rightarrow DM$ là tia phân giác $\widehat{ADE}(**)$

Từ $(*); (**)\Rightarrow M$ là tâm đường tròn nội tiếp $ADE$.

 

 

 

 

Akai Haruma
12 tháng 7 2021 lúc 22:51

Hình vẽ:

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 2 2018 lúc 14:15

Giải bài 55 trang 89 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 55 trang 89 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 55 trang 89 SGK Toán 9 Tập 2 | Giải toán lớp 9

4399 WX
Xem chi tiết
Nguyễn Ngọc Huy Toàn
11 tháng 4 2022 lúc 7:48

Ta có:

\(\widehat{A}+\widehat{C}=180^o\) ( góc đối của tứ giác nội tiếp )

\(\Rightarrow\widehat{C}=180^o-80^o=100^o\)

Ta có:

\(\widehat{B}+\widehat{D}=180^o\) ( góc đối của tứ giác nội tiếp )

\(\Rightarrow\widehat{D}=180^o-60^o=120^o\)

Thùy Trinh Ngô
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 9:09

a: góc ONM+góc OPM=180 độ

=>ONMP nội tiếp

b: ONMP nội tiếp

=>góc NMO=góc NPO

c: Xét ΔMNA và ΔMBN có

góc MNA=góc MBN

góc NMA chung

=>ΔMNA đồng dạng với ΔMBN

=>MN/MB=MA/MN

=>MN^2=MB*MA

hoang le thanh nga
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2023 lúc 0:06

a: góc MNO+góc MPO=90+90=180 độ

=>MNOP nội tiếp

b: MNOP nội tiếp

=>góc NMO=góc NPO

Sương
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2023 lúc 21:33

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC

Tô Thị Kim Liễu
Xem chi tiết
Bui Viet Anh
Xem chi tiết
khánh hiền
Xem chi tiết
Anh Khoa Trần Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 4 2022 lúc 20:07

Do tứ giác ABCD nội tiếp \(\Rightarrow B+D=180^0\) (1)

Mà \(\dfrac{B}{D}=\dfrac{2}{3}\Rightarrow B=\dfrac{2}{3}D\)

Thế vào (1):

\(\dfrac{2}{3}D+D=180^0\Rightarrow\dfrac{5}{3}D=180^0\)

\(\Rightarrow D=108^0\)

\(B=\dfrac{2}{3}D=\dfrac{2}{3}.108^0=72^0\)