Cho hai đường thẳng d 1 : y = 1 3 x + 10 v à d 2 : y = - 3 x + 10 Khi đó:
A. d 1 v à d 2 trùng nhau;
B. d 1 v à d 2 song song với nhau;
C. d 1 v à d 2 cắt nhau tại M 0 ; 1
D. d 1 v à d 2 không vuông góc với nhau.
Trên mặt phẳng toại độ Oxy, cho đường thẳng (d):y=(m-1)x-m với m là tham số.
Tìm m để (d) đồng quy với hai đường thẳng (d'):y=x - `2/3` và (d''):y=-x+1
Tọa độ giao điểm của (d') với (d'') là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x-\dfrac{2}{3}=-x+1\\y=-x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+x=\dfrac{2}{3}+1\\y=-x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{5}{3}\\y=-x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{5}{6}\\y=-\dfrac{5}{6}+1=\dfrac{1}{6}\end{matrix}\right.\)
Thay x=5/6 và y=1/6 vào (d), ta được:
\(\dfrac{5}{6}\left(m-1\right)-m=\dfrac{1}{6}\)
=>\(\dfrac{5}{6}m-\dfrac{5}{6}-m=\dfrac{1}{6}\)
=>\(-\dfrac{1}{6}m=1\)
=>m=-1:1/6=-6
Cho hàm số 3 2 y x x = − +3 có đồ thị (C) . Gọi 1 d , 2 d là tiếp tuyến của đồ thị (C) vuông góc với đường thẳng x y − + = 9 1 0 . Tính khoảng cách giữa hai đường thẳng 1 d , 2 d .
cho đường thẳng y = 2mx + 3 - m - x (d). Xác định m để đường thẳng d đi qua giao điểm của hai đường thẳng 2x -3y = 8 và y = -x + 1
Bài 10: Tìm giá trị k để 3 đường thẳng sau đồng quy:
(d1): y=2x+7, (d2): y=-1/3x+ 7/3, (d3): y=(-2/k)x -1/k
Bài 13: Cho đường thẳng y=4x (d)
Viết phương trình đường thẳng (d1) song song vs đường thẳng (d) và có tung độ gốc bằng 10
Trong mặt phẳng $O x y$, cho hai đường thẳng $(d): y=m x+3 ~m+2$ và $\left(d_{1}\right): y=x+1$. Tìm giá trị của $m$ để hai đường thẳng $(d)$ và $\left(d_{1}\right)$ song song với nhau.
Cho đường tròn (C): (x - 1 ) 2 + (y + 3 ) 2 = 10 và đường thẳng Δ: x + y + 1 = 0, biết đường tròn (C) cắt Δ tại hai điểm phân biệt A và B. Độ dài đoạn thẳng AB bằng:
A. 19 2
B. 38
C. 19 2
D. 38 2
Chọn B.
Vì đường tròn (C) cắt Δ tại hai điểm phân biệt A và B nên tọa độ điểm A và B là nghiệm của hệ phương trình:
Gọi H là trung điểm của AB suy ra IH ⊥ AB ⇒ IH ⊥ Δ.
Xét tam giác AIH vuông tại H ta có:
A H 2 + I H 2 = A I 2 ⇒ A H 2 = A I 2 - I H 2
Cho hai đường thẳng d và d'. Tìm m để góc giữa hai đường thẳng đó bằng 90°, với:
d: (m+3)x- (m-1)y+m-3=0
d': (m-2)x+ (m+1)y - m-1=0
Trong không gian Oxyz, cho hai đường thẳng d₁ và d₂ lần lượt có phương trình là x 1 = y + 1 2 = z 1 v à x 1 = y - 1 - 2 = z - 1 3 .Đường thẳng d cắt cả hai đường thẳng d₁, d₂ và song song với đường thẳng ∆ : x - 4 1 = y - 7 4 = z - 3 - 2 có phương trình là:
Chọn B
Gọi (P) là mặt phẳng chứa hai đường thẳng d₁ và d₂
Khi đó (P) đi qua M (0;-1;0) và có cặp véctơ chỉ phương
Gọi là VTPT của (P). Khi đó
Phương trình (P): -8x+3y+2z+3=0
Gọi H là giao điểm của đường thẳng d₂ và (P):
Đường thẳng d đi qua H và có VTCP có phương trình:
Cho các đường thẳng d1: x+y+3=0 , d2: x-y-4=0 , d3: x-2y=0. Tìm tọa độ điểm M nằm trên đường thẳng d3 sao cho khoảng cách từ M đến đường thẳng d1 bằng hai lần khoảng cách từ M đến đường thẳng d2
Do \(M\in d_3\) \(\Rightarrow M\left(2a;a\right)\)
\(\frac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=2\frac{\left|2a-a-4\right|}{\sqrt{1^2+\left(-1\right)^2}}\Leftrightarrow\left|3a+3\right|=2\left|a-4\right|\)
\(\Leftrightarrow\left(3a+3\right)^2=4\left(a-4\right)^2\Leftrightarrow9a^2+18a+9=4a^2-32a+64\)
\(\Leftrightarrow5a^2+50a-55=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)