Tìm giá trị của a để phương trình 2 + 3 x + 1 - a 2 - 3 x - 4 = 0 có 2 nghiệm phân biệt thỏa mãn: x 1 - x 2 = log 2 + 3 3 , ta có a thuộc khoảng:
A. - ∞ ; - 3
B. - 3 ; + ∞
C. 3 ; + ∞
D. 0 ; + ∞
Cho phương trình 2x2 + 2(m+1)x +m2+4m + 3 =0
1/Tìm giá trị của m để phương trình nhận x=1 làm nghiệm.Với m vừa tìm đc ,hãy tìm nghiệm còn lại của phương trình
2/Tìm các giá trị của m để phương trình có hai nghiệm trái dấu
3/tìm các giá trị của m để phương trình có hai nghiệm x1, x2
4/ tìm m để phương trình có hai nghiệm x1,x2 sao cho biểu thức A=|x1x2 - 2(x1x2 ) đạt giá trịn lớn nhất
cho phương trình 2x2 +2( m+1) x +m2 +4m +3=0 , với m là tham số
a) giải phương trình khi m=-3
b)tìm giá trị của m để phương trình nhan x=1 là nghiệm với m tìm được hãy tìm nghiệm còn lại của phương trình
c)tìm giá trị của m để phương trình có hai nghiệm trái dấu
d) tìm giá trị của m để phương trình có hai nghiệm x1 ,x2
e) tìm m để pt có hai nghiệm x1 ,x2 sao cho biểu thức sau đạt già trị lớn nhất A=/x1x2 -2(x1 +x2 )/
cho phương trình \(x^2-2\left(m+2\right)x+m+1=0\)
a, giải phương trình khi m = \(\dfrac{1}{2}\)
b, tìm các giá trị của m để phương trình có 2 nghiệm trái dấu
c, gọi \(x_1;x_2\) là 2 nghiệm của phương trình. Tìm giá trị của m để \(x_1\left(1-2x_2\right)+x_2\left(1-2x_2\right)=m^2\)
a. Bạn tự giải
b. Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow m+1< 0\Rightarrow m< -1\)
c. Đề bài có vẻ ko chính xác, sửa lại ngoặc sau thành \(x_2\left(1-2x_1\right)...\)
\(\Delta'=\left(m+2\right)^2-4\left(m+1\right)=m^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Pt đã cho luôn luôn có nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)
\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)
\(\Leftrightarrow2\left(m+2\right)-4\left(m+1\right)=m^2\)
\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
Cho phương trình: (m - 2) x + 3 = 5 (1)
a) Tìm điều kiện của m để phương trình (1) là phương trình bậc nhất một ẩn?
b) Tìm giá trị của m để phương trình (1) tương đương với phương trình:
7- 4x = 2x - 5
a: Để đây là phương trình bậc nhất một ẩn thì m-2<>0
hay m<>2
b: Ta có: 7-4x=2x-5
=>-6x=-12
hay x=2
Thay x=2 vào (1), ta được:
2(m-2)+3=5
=>2m-4=2
=>2m=6
hay m=3(nhận)
Cho phương trình (2m−5)x2 −2(m−1)x+3=0 (1); với m là tham số thực
1) Tìm m để phương trình (1) có một nghiệm bằng 2, tìm nghiệm còn lại.
3) Tìm giá trị của m để phương trình đã cho có nghiệm
4) Xác định các giá trị nguyên của để phương trình đã cho có hai nghiệm phân biệt đều nguyên dương
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
cho phương trình ẩn x : x^2 +2(m+3)x. 2m-11 (1)
a/ chứng tỏ phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của m
b/ Tìm giá trị của m để phương trình (1) có hai nghiệm x1 ,x2 thỏa mãn hệ thức 1/x1+1/x2=2
Cho phương trình x2 + 2 ( m + 3 )x + 2m - 11
a) Ta có:
△' = b'2 - ac = ( m + 3 )2 - 1 . ( 2m - 11 )
m2 - 6m + 9 - 2m + 11
△' = b'2 - ac =
Cho hai phương trình:
7x/8 - 5(x - 9) = 1/6(20x + 1,5) (1)
2(a - 1)x - a(x - 1) = 2a + 3 (2)
Tìm giá trị của a để phương trình (2) có một nghiệm bằng một phần ba nghiệm của phương trình (1).
Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2.
Suy ra, phương trình (3) có nghiệm x = 2
Thay giá trị x = 2 vào phương trình này, ta được (a − 2)2 = a + 3.
Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này: (a − 2)2 = a + 3 ⇔ a = 7
Khi a = 7, dễ thử thấy rằng phương trình (a − 2)x = a + 3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.
Bài 1: Tìm m để các phương trình sau là phương trình bậc nhất một ẩn
a. (2m - 10). x +3 = 0
b. (m - 10). x +2019 = 0
Bài 2:
a. Tìm giá trị của b để phương trình 4x + 2b = 0 có nghiệm là x = 5
b. Tìm giá trị của b để phương trình 7x + b = 0 có nghiệm là x = 2
Các bạn giúp mk với ạ
Cho phương trình :2(m-1)x+3=2m-5 (1)
a) Tìm m để phương trình (1) là phương trình bậc nhất 1 ẩn
b) Với giá trị nào của m thì phương trình (1) tương đương với phương trình 2x+5=3(x+2)-1(*)
a.
(1) là pt bậc nhất 1 ẩn khi và chỉ khi \(2\left(m-1\right)\ne0\Leftrightarrow m\ne1\)
b.
Ta có: \(2x+5=3\left(x+2\right)-1\)
\(\Leftrightarrow2x+5=3x+5\)
\(\Leftrightarrow x=0\)
Do đó (1) tương đương (*) khi (1) nhận \(x=0\) là nghiệm
\(\Rightarrow2\left(m-1\right).0+3=2m-5\)
\(\Rightarrow m=4\)
Cho phương trình : x2 – (m + 1)x + 2m - 3 = 0
a) + Chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị của m.
+ Tìm giá trị của m để phương trình (1) có nghiệm bằng 3.
+Ta có: \(\Delta=\left(m+1\right)^2-4.\left(2m-3\right)\)
\(=m^2+2m+1-8m+12\)
\(=m^2-6m+12\)
\(=\left(m-3\right)^2+3>0\)
=>dpcm
+Thay x=3 vào phương trình x2 – (m + 1)x + 2m - 3 = 0
ta được: 32-(m+1).3+2m-3=0
<=>9-3m-3+2m-3=0
<=>-m+3=0
<=>m=3
Vậy m=3 thì phương trình x2 – (m + 1)x + 2m - 3 = 0 có 1 nghiệm bằng 3
\(x^2-\left(m+1\right)x+2m-3=0\)
+ Xét \(\Delta=\left(m+1\right)^2-4\left(2m-3\right)=m^2-6m+13=\left(m^2-6m+9\right)+4=\left(m-3\right)^2+4>0\)với mọi m thuộc tập số thực.
Vậy phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m.
+ Phương trình có nghiệm \(x=3\) , thay vào phương trình , ta được :
\(3^2-\left(m+1\right).3+2m-3=0\Rightarrow m=3\)
Vậy m = 3