Cho x+y+z=3. Chúng minh bất đẳng thức: \(\frac{1}{x^2+x}\)+ \(\frac{1}{y^2+y}\)+\(\frac{1}{z^2+z}\)\(\ge\)\(\frac{3}{2}\)
cho các số thực dương x,y,x thỏa mãn xy ≥ 1 và z ≥1
Chứng minh bất đẳng thức \(\frac{x}{y+1}+\frac{y}{x+1}+\frac{z^3+2}{3\left(xy+1\right)}\ge\frac{3}{2}\)
Chứng minh bất đẳng thức sau với x,y,z dương \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\ge\frac{9}{2\left(x+y+z\right)}\)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\)
\(\ge\frac{9}{x+y+y+z+x+z}=\frac{9}{2\left(x+y+z\right)}\)
Dấu "=" xảy ra khi \(x=y=z\)
cho 3 số dương x,y,z thoã mãn điều kiện x^3+y^3+z^3=1 chứng minh bất đẳng thức
\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\)
\(\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{\sqrt{x^2}.\sqrt{1-x^2}}\ge\frac{x^3}{\frac{x^2+1-x^2}{2}}=2x^3\)
Tương tự
\(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3;\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Cộng vế theo vế
\(VT\ge2\left(x^3+y^3+z^3\right)=2\)
cho các số x,y,z thỏa mãn \(x\ge y\ge z>0\). chứng minh bất đẳng thức: \(\frac{x^2-y^2}{z}+\frac{z^2-y^2}{x}+\frac{x^2-z^2}{y}\ge3x-4y+z\)
Cho x,y,z là 3 số thực dương thỏa mãn xyz=1.Chứng minh bất đẳng thức
\(\frac{1}{\left(2x+y+z\right)^2}+\frac{1}{\left(x+2y+z\right)^2}+\frac{1}{\left(x+y+2z\right)^2}\le\frac{3}{16}\)
Chứng mình bất đẳng thức
1/\(\frac{1}{4}\left(\frac{x}{y}+\frac{y}{z}\right)\ge\frac{x}{y+z}\)
2/\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Mình mới làm quen với bất đẳng thức, các bạn giải chi tiết hộ mình nha. À mà giải theo Cauchy ý nha !
2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
theo yêu cầu của bạn thì đến đâ mk làm theo cách này
ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)
cách 2
\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
\(\Rightarrowđpcm\)
Bài 1: Chứng minh bất đẳng thức:
a) \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
b) \(2a^2+2b^2+8\ge2ab+4\left(a+b\right)\)
Bài 2: Cho 3 số dương x,y,z. Chứng minh: \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\)
Bài 3: Cho 3 số dương a,b,c có tổng =1. cminh: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Bài 4: Cho \(x,y,z\ge0\)
Chứng minh: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)
a/ có \(a^2+b^2+c^2+\frac{3}{4}\ge-\left(a+b+c\right)\)
\(\Leftrightarrow a^2+a+\frac{1}{4}+b^2+b+\frac{1}{4}+c^2+c+\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng với mọi a,b,c)
b/ \(2a^2+2b^2+8-2ab+4\left(a+b\right)\ge0\)
\(\Leftrightarrow a^2+4a+4+b^2+4b+4+a^2+2ab+b^2\ge0\)
\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(a+b\right)^2\ge0\)(luôn đúng)
bài 2 áp dụng bất đẳng thức cô si cho 3 số dương ta có
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=3\)
bài 3: giả sử \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\ge6\)
áp dụng bất đẳng thức cô si cho 2 số dương ta có
\(\frac{x}{y}+\frac{y}{x}\ge2\)cmtt \(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{z}{x}+\frac{x}{z}+\frac{y}{z}+\frac{z}{y}\ge6\)
áp dụng bất đăng thức trên ta đc
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)
bái 4: áp dụng bất đẳng thức cô si cho từng cái, nhân vế theo vế là đc nhé bn
cho x, y, z >1 thỏa mãn \(x^2+y^2+z^2=6.\) Chứng minh \(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge\frac{3\sqrt{2}}{3}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho x,y,z >0 và x+y+z=3.Chứng minh \(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\)
đặt A=\(\frac{1}{x\left(x+1\right)}\) +\(\frac{1}{y\left(y+1\right)}\) +\(\frac{1}{z\left(z+1\right)}\)=\(\frac{1}{x}\)-\(\frac{1}{x+1}\)+\(\frac{1}{y}\)-\(\frac{1}{y+1}\)+\(\frac{1}{z}\)-\(\frac{1}{z+1}\)
Áp dụng BĐT phụ \(\frac{1}{a}\)+\(\frac{1}{b}\)≥\(\frac{4}{a+b}\) (bạn tự chứng minh nha,quy đồng ,nhân chéo ,chuyển về )⇒\(\frac{1}{a+b}\) ≤\(\frac{1}{4}\)(\(\frac{1}{a}\)+\(\frac{1}{b}\))
⇒A≥\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)-\(\frac{1}{4}\)(\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)+3)
⇒A≥\(\frac{3}{4}\) (\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\))-\(\frac{3}{4}\)≥\(\frac{3}{4}\) (\(\frac{9}{x+y+z}\))-\(\frac{3}{4}\)
⇒a≥\(\frac{9}{4}\)-\(\frac{3}{4}\)=\(\frac{3}{2}\) dpcm