Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 12 2019 lúc 2:13

Gọi Elip cần tìm có dạng : (E) : Giải bài 3 trang 88 SGK hình học 10 | Giải toán lớp 10

Giải bài 3 trang 88 SGK hình học 10 | Giải toán lớp 10

Vậy phương trình chính tắc của elip: Giải bài 3 trang 88 SGK hình học 10 | Giải toán lớp 10

nguyen ngoc linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 4 2023 lúc 23:07

1: (E): x^2/a^2+y^2/b^2=1

Thay x=0 và y=3 vào (E), ta được:

3^2/b^2=1

=>b^2=9

=>b=3

F2(5;0)

=>c=5

=>\(\sqrt{a^2-9}=5\)

=>a^2-9=25

=>a^2=34

=>\(a=\sqrt{34}\)

=>x^2/34+y^2/9=1

2: Thay x=7 và y=0 vào (E), ta được:

7^2/a^2+0^2/b^2=0

=>a^2=49

=>a=7

Thay x=0 và y=3 vào (E), ta được:

0^2/a^2+3^2/b^2=1

=>b^2=9

=>b=3

=>(E): x^2/49+y^2/9=1

3: Thay x=0 và y=1 vào (E), ta được:

1/y^2=1

=>y=1

=>(E): x^2/a^2+y^2/1=1

Thay x=1 và y=căn 3/2 vào (E), ta được:

1^2/a^2+3/4=1

=>1/a^2=1/4

=>a^2=4

=>a=2

=>(E); x^2/4+y^2/1=1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 9 2018 lúc 8:56

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 6 2018 lúc 2:36

Đáp án D

Do N đối xứng với M qua gốc tọa độ nên tọa độ điểm 

Suy ra:

Từ đó: NF1+ MF1= 8.

Sách Giáo Khoa
Xem chi tiết
Đức Minh
30 tháng 3 2017 lúc 16:55

Phương trình chính tắc của elip có dạng: + = 1

a) Elip đi qua M(0; 3):

+ = 1 => b2 = 9

Elip đi qua N( 3; ):

+ = 1 => a2 = 25

Phương trình chính tắc của elip là : + = 1

b) Ta có: c = √3 => c2 = 3

Elip đi qua điểm M(1; )

+ = 1 => + = 1 (1)

Mặt khác: c2 = a2 – b2

=> 3 = a2 – b2 => a2 = b2 + 3

Thế vào (1) ta được : + = 1

<=> a2 = 4b2 + 5b2 – 9 = 0 => b2= 1; b2 = ( loại)

Với b2= 1 => a2 = 4

Phương trình chính tắc của elip là : + = 1.

CÔNG CHÚA THẤT LẠC
13 tháng 4 2017 lúc 21:24

Giải bài 3 trang 88 SGK hình học 10 | Giải toán lớp 10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 9 2019 lúc 5:36

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 10 2018 lúc 8:00

Future In Your Hand ( Ne...
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2021 lúc 23:38

\(F_1\left(-\sqrt{3};0\right)\Rightarrow c=\sqrt{3}\)

\(\Rightarrow a^2=b^2+c^2=b^2+3\)

Gọi phương trình (E) có dạng: \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\Leftrightarrow\dfrac{x^2}{b^2+3}+\dfrac{y^2}{b^2}=1\) 

Thay tọa độ M vào pt ta được:

\(\dfrac{1}{b^2+3}+\dfrac{3}{4b^2}=1\Rightarrow\left[{}\begin{matrix}b^2=1\\b^2=-\dfrac{9}{4}\left(loại\right)\end{matrix}\right.\) \(\Rightarrow a^2=4\)

Phương trình: \(\dfrac{x^2}{4}+\dfrac{y^2}{1}=1\)

Ma Ron
Xem chi tiết
2611
29 tháng 4 2023 lúc 22:09

Gọi ptr chính tắc của `(E)` có dạng: `[x^2]/[a^2]+[y^2]/[b^2]=1`

Thay `A(0;-4)` vào `(E)` có:

           `16/[b^2]=1<=>b^2=16`

Vì `F_2 (3;0)=>c=3=>c^2=9`

Ta có: `a^2=b^2+c^2`

`<=>a^2=16+9`

`<=>a^2=25`

Vậy ptr chính tắc của `(E)` là: `[x^2]/25+[y^2]/16=1`