x/12=2y/5=3z/10và x-y-z=74
Tìm x,y,z
x/12 =2y/5 = 3z/10 và x - y -z = 74
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{12}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{10}{3}}=\dfrac{x-y-z}{12-\dfrac{5}{2}-\dfrac{10}{3}}=\dfrac{74}{\dfrac{37}{6}}=12\)
Do đó: x=144; y=30; z=40
Tìm x, y biết:
x/12=2y/5=3z/10 và x-y-z=74
\(\dfrac{x}{12}=\dfrac{2y}{5}=\dfrac{3z}{10}\)
\(\Leftrightarrow\dfrac{x}{72}=\dfrac{2y}{30}=\dfrac{3z}{60}\)
\(\Leftrightarrow\dfrac{x}{72}=\dfrac{y}{15}=\dfrac{z}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{72}=\dfrac{y}{15}=\dfrac{z}{20}=\dfrac{x-y-z}{72-15-20}=\dfrac{74}{37}=2\)
Do đó: x=144; y=30; z=60
Tìm x,y,z thỏa x(x+2y+3z)=-5; y(x+2y+3z)=27 ; z(x+2y+3z)=5
Ta có: \(\left\{{}\begin{matrix}x\left(x+2y+3z\right)=-5\\y\left(x+2y+3z\right)=27\\z\left(x+2y+3z\right)=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-5}=x+2y+3z\\\dfrac{y}{27}=x+2y+3z\\\dfrac{z}{5}=x+2y+3z\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{-5}=\dfrac{y}{27}=\dfrac{z}{5}\Rightarrow\left\{{}\begin{matrix}y=\dfrac{-27}{5}x\\z=-x\end{matrix}\right.\)
Ta có: \(x\left(x+2y+3z\right)=-5\Rightarrow x\left(x+2.\dfrac{-27}{5}x-3x\right)=-5\)
\(\Rightarrow\dfrac{-64}{5}x^2=-5\Rightarrow x^2=\dfrac{25}{64}\Rightarrow x=\dfrac{5}{8}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=-\dfrac{27}{5}x=-\dfrac{27}{8}\\z=-x=-\dfrac{5}{8}\end{matrix}\right.\)
Tìm x, y, z thỏa mãn:
a) x(x+y+z)= -5, y(x+y+z)=9, z( x+y+z) =5
b) x( x+2y+3z)= -5, y(x+2y+3z)=27, z(x+2y+3z)=5
Giải x, y, z bằng 2 cách
a) x + y = 9 b) 4x + 3y = 12 c) x - y = 0
3y -2y = -5 -x + 2y = 6 x + y + 3z = 8
x + 2z = 5
Cho ba số thực x,y,z thoả mãn : x+2y+3z=18
Cmr : \(\dfrac{2y+3z+5}{1+x}+\dfrac{3z+x+5}{1+2y}+\dfrac{x+2y+5}{1+3z}\ge\dfrac{51}{7}\)
\(VT=\dfrac{2y+3z+5}{1+x}+1+\dfrac{3z+x+5}{2y+1}+1+\dfrac{x+2y+5}{1+3z}+1-3\)
\(VT=\dfrac{x+2y+3z+6}{1+x}+\dfrac{x+2y+3z+6}{1+2y}+\dfrac{x+2y+3z+6}{1+3z}-3\)
\(VT=24\left(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\right)-3\ge\dfrac{24.9}{1+x+1+2y+1+3z}-3=\dfrac{216}{21}-3=\dfrac{51}{7}\)
Cho ba số thực dương x,y,z thoả mãn :x+2y+3z=18 .Chứng minh rằng :
\(\dfrac{2y+3z+5}{1+x}+\dfrac{3z+x+5}{1+2y}+\dfrac{x+2y+5}{1+3z}\ge\dfrac{51}{7}\)
bài 10 a)x/2=y/3 và 4x-3y=-2
b)2x=5y và x+y=-42
bài 11 a)x/3=y/4=z/6 và x+2y-3z=-14
b)x/5=y/6;y/8=z/7 và x=y-z=138
c)x=y/3=z/5 và 15x-5y=3z=45
dx/2=y/3;y/2=z/3 vâ x-2y+3z=19
Bài `10`
`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`
ADTC dãy tỉ số bằng nhau ta có :
`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`
`=> x/2=2=>x=2.2=4`
`=>y/3=2=>y=2.3=6`
`b,` Ta có : `2x=5y=>x/5=y/2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5=y/2=(x+y)/(5+2)=-42/7=-6`
`=>x/5=-6=>x=-6.5=-30`
`=>y/2=-6=>y=-6.2=-12`
Bài `11`
`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`
`=>x/3=2=>x=2.3=6`
`=>y/4=2=>y=2.4=8`
`=>z/6=2=>z=2.6=12`
Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`
`d,` Ta có :
`x/2=y/3=>x/4=y/6`
`y/2=z/3=>y/6=z/9`
`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`
ADTC dãy tỉ số bằng nhau ta có :
`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`
`=>x/4=1=>x=1.4=4`
`=>y/6=1=>y=1.6=6`
`=>z/9=1=>z=1.9=9`
Cho x; y; z thỏa mãn: x−12=y−23=z−34x−12=y−23=z−34 và x - 2y + 3z = 14 . Khi đó: x + y + z = ..............