tìm min của 2x2 + 3xyz + 2z2 + xy + yz + xz + y2 +2020
cho các số dương x,y,z thỏa mãn x+y+z=1 tìm min của biểu thức
P=√(2x2+xy+2y2) +√(2y2+yz+2z2)+ √(2z2+xz+2x2)
Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)
Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Chứng minh tương tự:
\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)
Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Bạn tham khảo nhé
https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737
CMR: x3+y3+z3-3xyz= (x+y+z)(x2+y2+z2- xy - yz - xz)
Ta có: \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-\left[3xy\left(x+y+z\right)\right]\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-zy+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-zy+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)(đpcm)
Cho x,y,z>0 và \(x+y+z\le\dfrac{3}{4}\). Tìm Min A = \(\Sigma\dfrac{x^3}{\sqrt{y^2+3}}\)
Cho x,y,z> 0 và xy+yz+xz = 3xyz . Tìm MaxP = \(\Sigma\dfrac{yz}{x^3\left(z+2y\right)}\)
cho x,y,z là các số thực dương tm \(3xyz\ge x+y+z\)
tìm min của P= \(\frac{xy+yz+xz-1}{\sqrt{3x^2+1}+\sqrt{3y^2+1}+\sqrt{3z^2+1}}\)
Cho x,y,z>0 và xy+yz+xz = 3xyz . Tìm Max P = \(\Sigma\dfrac{1}{x+2y+3z}\)
\(xy+yz+zx=3xyz\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
Có \(\dfrac{1}{x+2y+3z}=\dfrac{1}{\left(x+y\right)+\left(y+z\right)+2z}\le\dfrac{1}{9}\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{2z}\right)\le\dfrac{1}{9}\left(\dfrac{1}{4x}+\dfrac{1}{4y}+\dfrac{1}{4y}+\dfrac{1}{4z}+\dfrac{1}{2z}\right)=\dfrac{1}{9}\left(\dfrac{1}{4x}+\dfrac{1}{2y}+\dfrac{3}{4z}\right)\)
Tương tự cx có: \(\dfrac{1}{y+2z+3x}\le\dfrac{1}{9}\left(\dfrac{1}{4y}+\dfrac{1}{2z}+\dfrac{3}{4x}\right)\);\(\dfrac{1}{z+2x+3y}\le\dfrac{1}{9}\left(\dfrac{1}{4z}+\dfrac{1}{2x}+\dfrac{3}{4y}\right)\)
Cộng vế với vế \(\Rightarrow\Sigma\dfrac{1}{x+2y+3z}\le\dfrac{1}{9}\left(\dfrac{1}{4}+\dfrac{1}{2}+\dfrac{3}{4}\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{2}\)
Dấu "=" xayra khi x=y=z=1
Vậy \(P_{max}=\dfrac{1}{2}\)
Cho các số thực dương x,y,z thỏa mãn xy+yz+xz=2020
Tìm GTLN của \(A=\sqrt{\frac{yz}{x^2+2020}}+\sqrt{\frac{xy}{y^2+2020}}+\sqrt{\frac{xz}{z^2+2020}}.\)
Nhìn đề bài thấy sai sai :)) Bn nào lm giúp mà phải sửa đề thì cứ sửa nhé. Tks
Uầy đề sai đâu ta
\(A=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{xy}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\frac{xz}{\left(x+z\right)\left(y+z\right)}}\)
Áp dụng bđt AM-GM ta có
\(A\le\frac{y}{x+y}+\frac{z}{x+z}+\frac{x}{x+y}+\frac{y}{y+z}+\frac{x}{x+z}+\frac{y}{y+z}=3\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{2020}{3}}\)
Cứ tưởng áp dụng Cô si cho 2 tổng ở mẫu thôi :) quên là còn áp dụng như này :) nhưng bạn còn sai 1 chỗ nhé
\(\sqrt{a.b}\le\frac{a}{2}+\frac{b}{2}.\) MaxA =3/2 :v
ờ haaa :P đôi lúc lú lẫn
Sorry ha
Học tốt!!!!!!!
tính các giá trị của các biểu thức sau tại: x= -1; y= 1; z= -2
a, A= 4x2 - xy + z2 . x2 - yz
b, B= 3xyz - 2z2/ x2 + 1
c, C= x2y2z3 : y2 + 1/ 2 x2y
b) Thay x=-1; y=1 và z=-2 vào B, ta được:
\(B=\dfrac{3\cdot\left(-1\right)\cdot1\cdot\left(-2\right)-2\cdot\left(-2\right)^2}{\left(-1\right)^2+1}=\dfrac{6-8}{1+1}=\dfrac{-2}{2}=-1\)
Mình đang cần gấp! Giúp mình với ạ
Bài 3: Chứng minh rằng:
a) (x+y+z)2= x2+y2+z2+2xy+2xz+2yz
b) (x-y).(x2+y2+z2-xy-yz-xz)= x3+y3+z3-3xyz
c) (x+y+z)3= x3+y3+z3+3.(x+y).(y+z).(z+x)
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
c,
(\(x\) + y + z)3
=(\(x\) + y)3 + 3(\(x\) + y)2z + 3(\(x\)+y)z2 + z3
= \(x^3\) + 3\(x^2\)y + 3\(xy^{2^{ }}\) + y3 + 3(\(x\)+y)z(\(x\) + y + z) + z3
= \(x^3\) + y3 + z3 + 3\(xy\)(\(x\) + y) + 3(\(x+y\))z(\(x+y+z\))
= \(x^3\) + y3 + z3 + 3(\(x\) + y)( \(xy\) + z\(x\) + yz + z2)
= \(x^3\) + y3 + z3 + 3(\(x\) + y){(\(xy+xz\)) + (yz + z2)}
= \(x^3\) + y3 + z3 + 3(\(x\) + y){ \(x\)( y +z) + z(y+z)}
= \(x^3\) + y3 + z3 + 3(\(x\) + y)(y+z)(\(x+z\)) (đpcm)
Cho x,y,z > 0 xy + yz +xz=1 tìm min của
\(\frac{1}{x^4-yz+2}\)+\(\frac{1}{y^4-xz+2}\)+ \(\frac{1}{z^4-xy+2}\)