Tìm tập xác định D của hàm số f x = x + 1 + 1 x .
A. D = R / 0
B. D = R / - 1 ; 0
C. D = - 1 ; + ∞ / 0
D. D = [ - 1 ; + ∞ )
Cho hàm số f(x)=\(\frac{|x+1|+|x-1|}{|x+1|-|x-1|}\)
a. Tìm tập xác định của hàm số.
b.CMR: f(-x)= -f(x) với mọi x thuộc D
Tìm tập xác định D của hàm số f ( x ) = 1 x ; x ≥ 1 x + 1 ; x < 1
A. D = {−1}.
B. D = R
C. D = [-1;+ ∞ )
D. D = [−1; 1)
Tìm tập xác định D của hàm số f ( x ) = 1 2 − x ; x ≥ 1 2 − x ; x < 1
A. D = R
B. D = ( 2 ; + ∞ )
C. D = ( - ∞ ; 2 )
D. D = R\{2}
Đáp án D
Hàm số xác định khi:
x ≥ 1 2 − x ≠ 0 x < 1 2 − x ≥ 0 ⇔ x ≥ 1 x ≠ 2 x < 1 x ≤ 2 ⇔ x ≥ 1 x ≠ 2 x < 1
Vậy xác định của hàm số là D=R\{2}
Cho hàm số:
\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tìm tập xác định của hàm số
b) Tìm x để f(x) nguyên
Sửa b)`->` x nguyên để f(x) nguyên
a)TXĐ:`{(x>=0),(sqrtx-1 ne 0):}`
`<=>{(x>=0),(sqrtx ne 1):}`
`=>x>=0,x ne 1`
`b)f(x) in ZZ=>sqrtx+1 vdots sqrtx-1`
`=>sqrtx-1+2 vdots sqrtx-1`
`=>2 vdots sqrtx-1`
`=>sqrtx-1 in Ư(2)`
`=>sqrtx-1 in {+-1;2}`
`=>sqrtx in {0;2;3}`
`=>x in {0;4;9}`
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Để f(x) nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;2;3\right\}\)
hay \(x\in\left\{0;4;9\right\}\)
Bải 1: Tìm tập xác định của các hàm số sau: a) 3x-2 2x+1 c) y=\sqrt{2x+1}-\sqrt{3-x} b) y= ²+2x-3 d) y= √2x+1 X f(x) Chú ý: * Hàm số cho dạng v thi f(x) * 0. ở Hàm số cho dạng y = v/(x) thì f(r) 2 0. X * Hàm số cho dạng " J7(p) thi f(x)>0.
a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)
b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)
c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)
I. HÀM SỐ, TXĐ, CHẴN LẺ, ĐƠN ĐIỆU, ĐỒ THỊ.
1. TXĐ CỦA HÀM SỐ
Câu 1.Tìm tập xác định của hàm số y=\(\dfrac{\sqrt{x-1}}{x-3}\)
Câu 2.Tìm tập xác định của hàm số y= \(\sqrt[3]{x-1}\)
Câu 3. Tìm tập xác định của hàm số y=\(\dfrac{\sqrt[3]{1-x}+3}{\sqrt{x+3}}\)
Câu 4. Tìm tập xác định của hàm số y=\(\sqrt{\left|x-2\right|}\)
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
cho hàm số y =f(x) =\(\left\{{}\begin{matrix}\dfrac{2}{x-1}\\\sqrt{x+1}\\x^{2^{ }}-1\end{matrix}\right.\)
khi x< 0 ; khi 0 ≤ x ≤ 2 ; khi x>2
a. Tìm tập xác định của hàm số.
b. Tính f(-1), f(0), f(1), f(2), f(3).
a: TXĐ: D=R
b: \(f\left(-1\right)=\dfrac{2}{-1-1}=\dfrac{2}{-2}=-1\)
\(f\left(0\right)=\sqrt{0+1}=1\)
\(f\left(1\right)=\sqrt{1+1}=\sqrt{2}\)
\(f\left(2\right)=\sqrt{3}\)
Cho hàm số f(x)= x+2/x-1
Tìm tập xác định của f(x)
Tìm tập xác định của các hàm số sau:
a) \(f(x) = \sqrt { - 5x + 3} \)
b) \(f(x) = 2 + \frac{1}{{x + 3}}\)
a) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \( - 5x + 3 \ge 0,\)tức là khi \(x \le \frac{3}{5}.\)
Vậy tập xác định của hàm số này là \(D = ( - \infty ;\frac{3}{5}]\)
b) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \(x + 3 \ne 0,\)tức là khi \(x \ne - 3\)
Vậy tập xác định của hàm số này là \(D = \mathbb{R}\backslash \left\{ { - 3} \right\}\)
Cho hàm số y=f(x) xác định bởi công thức: \(y=\frac{-18}{\left|2x-1\right|}\)
a) Tìm đk xác định và tập xác định của hàm số.
b) Biết \(x\in\left\{-4;-2;-1;0;1;2;3\right\}\). Hãy viết tập hợp các cặp số xác định bởi hàm số y=f(x)
Câu a mình làm đc r, nhờ m.n làm hộ mình câu b và ý nhỏ này nx nhé, cũng nằm trong bài.
c) Tìm \(x\in Z\) để hàm số y=f(x) đạt GTNN? Tính giá trị đó.