Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Vũ
Xem chi tiết
Phan Đức
Xem chi tiết
Akai Haruma
22 tháng 10 2020 lúc 10:24

Lời giải:

Do góc $a$ nhọn nên các tỉ số lượng giác mang giá trị dương.

Áp dụng công thức $\sin ^2a+\cos ^2a=1$

$\Rightarrow \cos^2 a=1-\sin ^2a=1-0,28^2=0,9216$

$\Rightarrow \cos a=\frac{24}{25}=0,96$

$\tan a=\frac{\sin a}{\cos a}=\frac{0,28}{0,96}=\frac{7}{24}$

$\cot a=\frac{1}{\tan a}=\frac{24}{7}$

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 10 2018 lúc 9:42

Ta có  tan α . c ot α = 1 ⇒ 12. cot α = 1 ⇔ cot α = 1 12

Lại có  1 sin 2 α = 1 + ​ cot 2 α = 1 + ​ 1 144 = 145 144 ⇔ sin 2 α = 144 145

Đáp án D

hoho209
Xem chi tiết
Trần Ái Linh
11 tháng 6 2021 lúc 20:45

a) Có: `1+tan^2a=1/(cos^2a)`

`<=> 1+(3/5)^2=1/(cos^2a)`

`=> cosa=\sqrt10/4`

`=> sina = \sqrt(1-cos^2a) = \sqrt6/4`

b) Có: `sin^2a + cos^2a=1`

`<=> sin^2a + (1/4)^2=1`

`=> sina=\sqrt15/4`

`=> tana = (sina)/(cosa) = \sqrt15`

 

An Thy
11 tháng 6 2021 lúc 20:50

a) Giả sử tam giác ABC vuông tại B có \(tanA=\dfrac{3}{5}\)

\(\Rightarrow\dfrac{BC}{AB}=\dfrac{3}{5}\Rightarrow BC=\dfrac{3}{5}AB\Rightarrow AC=\sqrt{AB^2+\dfrac{9}{25}AB^2}=\dfrac{\sqrt{34}}{5}AB\)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{5}{\sqrt{34}}\Rightarrow cosA=\dfrac{5}{\sqrt{34}}\)

\(AC=\dfrac{\sqrt{34}}{5}AB\Rightarrow AC=\dfrac{\sqrt{34}}{5}.\dfrac{5}{3}BC=\dfrac{\sqrt{34}}{3}BC\Rightarrow\dfrac{BC}{AC}=\dfrac{3}{\sqrt{34}}\)

\(\Rightarrow sinA=\dfrac{3}{\sqrt{34}}\)

b) cũng tương tự như câu a thôi,bạn tự tính nha

 

chu phương linh
Xem chi tiết
Trương Mai Trâm
Xem chi tiết
alibaba nguyễn
29 tháng 10 2016 lúc 16:27

Ta có \(\sin A=1,4-\cos A\)

Thế vào \(\sin^2A+\cos^2A=1\)ta được

\(25\cos^2A-35\cos A+12=0\)

\(\Leftrightarrow\orbr{\begin{cases}\cos A=0,8\\\cos A=0,6\end{cases}\Rightarrow\orbr{\begin{cases}\sin A=0,6\\\sin A=0,8\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}\cot A=\frac{4}{3}\\\cot A=\frac{3}{5}\end{cases}}\)

Devil
29 tháng 10 2016 lúc 16:43

giả sử tam giác ABC vuông tại A

đặt Ab=c; AC=b; BC=a, \(\widehat{B}\)=A

ta có:

\(sinA+cosA=\frac{b}{a}+\frac{c}{a}=\frac{b+c}{a}=\frac{7}{5}\)

=>b+c=7

=>(b+c)2=b2+2bc+c2=49

=>\(sin^2A+cos^2A=\left(\frac{b}{a}\right)^2+\left(\frac{c}{a}\right)^2=\frac{b^2+c^2}{a^2}=\frac{a^2}{a^2}=\frac{25}{25}\)

=>b2+c2=25

ta có:

(b+c)2-b2-c2=49-25

2bc=24

bc=12

ta có: b.c=12; b+c=7

=> 3.4=4.3=1.12=12.1=2.6=6.2

mà b+c=7=> b=4,c=3 hoặc b=3,c=4

=> cot A= 4/3 hoặc 3/4

santa sama-san
Xem chi tiết
santa sama-san
19 tháng 8 2017 lúc 18:49

4

Đoàn Minh Huy
Xem chi tiết
QSDFGHJK
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 6 2020 lúc 17:01

\(0< a< \frac{\pi}{2}\Rightarrow cosa>0\Rightarrow cosa=\sqrt{1-sin^2a}=\frac{4}{5}\)

\(\Rightarrow tana=\frac{sina}{cosa}=\frac{3}{4}\) ; \(cota=\frac{1}{tana}=\frac{4}{3}\)

\(\Rightarrow A=\frac{\frac{4}{3}+\frac{3}{4}}{\frac{4}{3}-\frac{3}{4}}=...\)

\(\frac{2sina+3cosa}{4sina-5cosa}=\frac{\frac{2sina}{cosa}+\frac{3cosa}{cosa}}{\frac{4sina}{cosa}-\frac{5cosa}{cosa}}=\frac{2tana+3}{4tana-5}=\frac{2.3+3}{4.3-5}=...\)

\(A=\frac{2sin^2a-3cos^2a}{sin^2a-2sina.cosa-cos^2a}=\frac{\frac{2sin^2a}{sin^2a}-\frac{3cos^2a}{sin^2a}}{\frac{sin^2a}{sin^2a}-\frac{2sina.cosa}{sin^2a}-\frac{cos^2a}{sin^2a}}=\frac{2-3cot^2a}{1-2cota-cot^2a}=\frac{2-3.3^2}{1-2.3-3^2}=...\)