\(39\dfrac{1}{3}:\dfrac{4}{5}-19\dfrac{1}{3}:\dfrac{4}{5}\)
\(\dfrac{-4}{5}.39\dfrac{1}{3}-\dfrac{-4}{5}.19\dfrac{1}{3}\)
\(\dfrac{-4}{5}.39\dfrac{1}{3}-\dfrac{-4}{5}.19\dfrac{1}{3}=\dfrac{-4}{5}\left(39\dfrac{1}{3}-19\dfrac{1}{3}\right)=\dfrac{-4}{5}.20=-16\)
\(-\dfrac{4}{5}.\left(39\dfrac{1}{3}-19\dfrac{1}{3}\right)=-\dfrac{4}{5}.20=\left(-16\right)\)
\(\dfrac{4}{9}.19\dfrac{1}{3}+\dfrac{-4}{9}.39\dfrac{1}{3}+\dfrac{-3^2}{5}:\left(-0,2\right)\)
\(\dfrac{\left(-5^3\right)^2}{27}.\dfrac{3}{23}.\dfrac{6^2}{-5^6}\)
\(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}\)
\(\dfrac{3}{7}.19\dfrac{1}{3}-\dfrac{3}{7}:33\dfrac{1}{3}\)
\(\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=\dfrac{4}{5}\)
x:(-2,14)=(-3,12):1,2
Tính 1 câu thoy nhé !
\(\dfrac{3}{7}.19\dfrac{1}{3}-\dfrac{3}{7}.33\dfrac{1}{3}\)
= \(\dfrac{3}{7}.\left(19\dfrac{1}{3}-33\dfrac{1}{3}\right)\)
=\(\dfrac{3}{7}.-14=-6\)
\(-1\dfrac{1}{5}.\dfrac{12+\dfrac{4}{3}-\dfrac{12}{37}-\dfrac{12}{35}}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{53}}:\dfrac{4+\dfrac{4}{17}+\dfrac{4}{19}+\dfrac{4}{2003}}{5+\dfrac{5}{17}+\dfrac{5}{19}+\dfrac{5}{2003}}\)
\(-1\dfrac{1}{5}.\dfrac{12+\dfrac{4}{3}-\dfrac{12}{37}-\dfrac{12}{35}}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{35}}:\dfrac{4+\dfrac{4}{17}+\dfrac{4}{19}+\dfrac{4}{2003}}{5+\dfrac{5}{17}+\dfrac{5}{19}+\dfrac{5}{2003}}\)
\(=\dfrac{-6}{5}.\dfrac{4\left(3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{35}\right)}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{35}}:\dfrac{4\left(1+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2003}\right)}{5\left(1+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2003}\right)}\)
\(=\dfrac{-6}{5}.4:\dfrac{4}{5}\)
\(=\dfrac{-6.4.5}{5.4}=-6\)
\(-1\dfrac{1}{5}.\dfrac{12+\dfrac{4}{3}-\dfrac{12}{37}-\dfrac{12}{35}}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{53}}:\dfrac{4+\dfrac{4}{17}+\dfrac{4}{19}+\dfrac{4}{2003}}{5+\dfrac{5}{17}+\dfrac{5}{19}+\dfrac{5}{2003}}\)
\(=\dfrac{-6}{5}.\dfrac{4\left(3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{53}\right)}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{53}}:\dfrac{4\left(1+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2003}\right)}{5\left(1+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2003}\right)}\)
\(=\dfrac{-6}{5}.\dfrac{4}{3}:\dfrac{4}{5}\)
\(=\dfrac{-6.4.5}{5.3.4}=\dfrac{-6}{3}=-2\)
Vậy...
bài 1: thực hiện phép tính:
a) \(\dfrac{-5}{12}\) . \(\dfrac{4}{19}\) +\(\dfrac{-7}{12}\) . \(\dfrac{4}{19}\) -\(\dfrac{40}{57}\)
b) \(\dfrac{1}{3}\) .\(\dfrac{4}{5}\) +\(\dfrac{1}{3}\).1.\(\dfrac{1}{5}\) +( \(\dfrac{-3}{2}\) )^2
giúp em
a) −512−512 . 419419 +−712−712 . 419419 -40574057 Đầu tiên, chúng ta tính toán phép nhân: −512 x 419419 = -214,748,928 −712 x 419419 = -298,238,328
Tiếp theo, chúng ta tính tổng của hai kết quả: -214,748,928 + -298,238,328 = -513,987,256
Cuối cùng, chúng ta trừ đi 40574057: -513,987,256 - 40574057 = -554,561,313
Vậy kết quả của phép tính a là -554,561,313.
b) 1313 . 4545 + 1313.1.1515 + ( −32−32 )^2 Đầu tiên, chúng ta tính toán phép nhân: 1313 x 4545 = 5,964,385 1313 x 1.1515 = 1,511.195 −32 x −32 = 1,024
Tiếp theo, chúng ta tính tổng của ba kết quả: 5,964,385 + 1,511.195 + 1,024 = 5,966,920.195
Vậy kết quả của phép tính b là 5,966,920.195.
1)\(\dfrac{1}{2}+\dfrac{13}{19}-\dfrac{4}{9}+\dfrac{6}{19}+\dfrac{5}{18}\)
2)\(\dfrac{ }{\dfrac{-20}{23}+\dfrac{2}{3}-\dfrac{3}{23}+\dfrac{2}{5}+\dfrac{7}{15}}\)
3)\(\dfrac{ }{\dfrac{4}{3}+\dfrac{-11}{31}+\dfrac{3}{10}-\dfrac{20}{31}-\dfrac{2}{5}}\)
4)\(\dfrac{ }{\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}}\)
1) \(\dfrac{1}{2}+\dfrac{13}{19}-\dfrac{4}{9}+\dfrac{6}{19}+\dfrac{5}{18}\)
\(=\dfrac{1}{2}+\left(\dfrac{13}{19}+\dfrac{6}{19}\right)-\dfrac{4}{9}+\dfrac{5}{18}\)
\(=\dfrac{3}{2}-\dfrac{4}{9}+\dfrac{5}{18}\)
\(=\dfrac{19}{18}+\dfrac{5}{18}\)
\(=\dfrac{24}{18}\)
\(=\dfrac{4}{3}\)
2) \(\dfrac{-20}{23}+\dfrac{2}{3}-\dfrac{3}{23}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=\left(-\dfrac{20}{23}-\dfrac{3}{23}\right)+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=-1+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=-\dfrac{1}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=\dfrac{1}{15}+\dfrac{7}{15}\)
\(=\dfrac{8}{15}\)
3) \(\dfrac{4}{3}+\dfrac{-11}{31}+\dfrac{3}{10}-\dfrac{20}{31}-\dfrac{2}{5}\)
\(=\left(\dfrac{-11}{31}-\dfrac{20}{31}\right)+\dfrac{4}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)
\(=-1+\dfrac{4}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)
\(=\dfrac{1}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)
\(=\dfrac{1}{3}-\dfrac{1}{10}\)
\(=\dfrac{7}{30}\)
4) \(\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}\)
\(=\dfrac{5}{7}.\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)\)
\(=\dfrac{5}{7}.-\dfrac{7}{11}\)
\(=-\dfrac{35}{77}\)
\(=-\dfrac{5}{11}\)
1, Tính
\(-2\dfrac{1}{4}.\left(3\dfrac{5}{12}-1\dfrac{2}{9}\right)\)
\(\left(-25\%+0,75+\dfrac{7}{12}\right):\left(-2\dfrac{1}{8}\right)\)
2, Tính nhanh
\(\dfrac{4}{9}.19\dfrac{1}{3}-\dfrac{4}{9}.39\dfrac{1}{3}\) | \(19\dfrac{5}{8}:\dfrac{7}{12}-15\dfrac{1}{4}.\dfrac{12}{7}\)
\(\dfrac{-5}{7}.\dfrac{5}{11}+\dfrac{-5}{7}.\dfrac{2}{11}-\dfrac{5}{7}:\dfrac{11}{14}\) | \(\dfrac{4}{7}.\dfrac{89}{5}-\dfrac{4}{5}.\dfrac{82}{7}\)
\(\dfrac{5}{7}.\dfrac{-4}{19}+\dfrac{-15}{7}.\dfrac{5}{19}\) | \(8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\)
- Giải hộ với ạ, mấy anh, chị lớp 7,8 cũng được huhu :(( sáng mai nộp đề cương rồi. Làm ơn đi a
Muốn gì cũng hậu tạ :>
\(-2\dfrac{1}{4}.\)\(\left(3\dfrac{5}{12}-1\dfrac{2}{9}\right)\)
=\(\dfrac{-9}{4}\).\(\left(\dfrac{41}{12}-\dfrac{11}{9}\right)\)
=\(\dfrac{-9}{4}.\dfrac{41}{12}-\dfrac{-9}{4}.\dfrac{11}{9}\)
=\(\dfrac{-123}{16}-\dfrac{-11}{4}\)
=\(\dfrac{-123}{16}-\dfrac{-44}{16}\)
=\(\dfrac{-79}{16}\)
\(\left(-25\%+0,75+\dfrac{7}{12}\right)\div\left(-2\dfrac{1}{8}\right)\)
=\(\left(\dfrac{-1}{4}+\dfrac{3}{4}+\dfrac{7}{12}\right)\div\left(\dfrac{-17}{8}\right)\)
=\(\left(\dfrac{-3}{12}+\dfrac{9}{12}+\dfrac{7}{12}\right).\dfrac{-8}{17}\)
=\(\dfrac{13}{12}.\dfrac{-8}{17}=\dfrac{-26}{51}\)
\(\dfrac{4}{7}.\dfrac{89}{5}-\dfrac{4}{5}.\dfrac{82}{7}\)
=\(\dfrac{4}{5}.\dfrac{89}{7}\dfrac{4}{5}.\dfrac{82}{7}\)
=\(\dfrac{4}{5}\left(\dfrac{89}{7}-\dfrac{82}{7}\right)\)
=\(\dfrac{4}{5}.1=\dfrac{4}{5}\)
\(\approx\) chúc bạn học tốt \(\approx\)
a) A = \(\dfrac{19}{9}-\dfrac{-4}{11}-\dfrac{2}{-3}\)
b) B = \(\dfrac{-5}{6}+\dfrac{-7}{12}-\dfrac{1}{-5}\)
c) C = \(\dfrac{-3}{4}+\dfrac{11}{3}-\dfrac{-5}{18}\)
d) D = \(\dfrac{-19}{3}-\dfrac{4}{5}-\dfrac{-2}{3}\)
a: \(A=\dfrac{19}{9}+\dfrac{4}{11}+\dfrac{2}{3}=\dfrac{209}{99}+\dfrac{44}{99}+\dfrac{66}{99}=\dfrac{319}{99}\)
b: \(B=\dfrac{-50}{60}+\dfrac{-35}{60}+\dfrac{12}{60}=\dfrac{-73}{60}\)
c: \(C=\dfrac{-27}{36}+\dfrac{132}{36}+\dfrac{10}{36}=\dfrac{115}{36}\)
d: \(D=\dfrac{-19}{3}+\dfrac{2}{3}-\dfrac{4}{5}=\dfrac{-17}{3}-\dfrac{4}{5}=\dfrac{-85-12}{15}=-\dfrac{97}{15}\)
I = \(\dfrac{5}{4}+\dfrac{-1}{3}-\dfrac{5}{-24}\)
J = \(\dfrac{-19}{-9}+\dfrac{4}{-11}-\dfrac{-2}{3}\)
K = \(\dfrac{-5}{6}-\dfrac{7}{12}+\dfrac{-3}{4}\)
L = \(\dfrac{-3}{20}+\dfrac{1}{5}-\dfrac{-5}{3}\)
\(I=\dfrac{5}{4}+\dfrac{-1}{3}-\dfrac{5}{-24}=\dfrac{9}{8}\)
\(J=\dfrac{-19}{-9}+\dfrac{4}{-11}-\dfrac{-2}{3}=\dfrac{239}{99}\)
\(K=\dfrac{-5}{6}-\dfrac{7}{12}+\dfrac{-3}{4}=-\dfrac{13}{6}\)
\(L=\dfrac{-3}{20}+\dfrac{1}{5}-\dfrac{-5}{3}=\dfrac{103}{60}\)
Tính bằng cách hợp lí: \(B=1\dfrac{6}{41}\cdot\left(\dfrac{12+\dfrac{12}{19}-\dfrac{12}{37}-\dfrac{12}{53}}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{53}}:\dfrac{4+\dfrac{4}{17}+\dfrac{4}{19}+\dfrac{4}{2006}}{5+\dfrac{5}{17}+\dfrac{5}{19}+\dfrac{5}{2006}}\right)\cdot\dfrac{124242423}{237373735}\)
Ta có:B=1\(\dfrac{6}{41}\)( \(\dfrac{12+\dfrac{12}{19}-\dfrac{12}{37}-\dfrac{12}{53}}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{53}}:\dfrac{4+\dfrac{4}{17}+\dfrac{4}{19}+\dfrac{4}{2006}}{5+\dfrac{5}{17}+\dfrac{5}{19}+\dfrac{5}{2006}}\) )
B=\(\dfrac{47}{41}\) [\(\dfrac{12\left(1+\dfrac{1}{19}-\dfrac{1}{37}-\dfrac{1}{53}\right)}{3\left(1+\dfrac{1}{3}-\dfrac{1}{37}-\dfrac{1}{53}\right)}:\dfrac{4\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2006}\right)}{5\left(1+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2006}\right)}\) B = \(\dfrac{47}{41}\) [ \(\dfrac{12}{3}:\dfrac{4}{5}\)]
B = \(\dfrac{47}{41}\)[ 4 . \(\dfrac{5}{4}\)]
B = \(\dfrac{47}{41}.5\)
B = \(\dfrac{235}{41}\)
Chúc bn hc tốt!!!
mk có thắc mắc là bạn để 3 ra ngoài sao 1/3 vẫn giữ nguyên vậy phải bằng 1/9 mới đúng chứ'