Cho hai đa thức
A ( x ) = x 5 + x 2 + 5 x + 6 - x 5 - 3 x - 5 , B ( x ) = x 4 + 2 x 2 - 3 x - 3 - x 4 - x 2 + 3 x + 4
c. Chứng tỏ rằng x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x)
Cho hai đa thức:
\(A(x) = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6\) và \(B(x) = - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4}\).
a) Tìm đa thức M(x) sao cho \(M(x) = A(x) + B(x)\).
b) Tìm đa thức C(x) sao cho \(A(x) = B(x) + C(x)\).
a) \(M(x) = A(x) + B(x) \\= 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4} \\=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)\\= {x^2} - 2.\)
b) \(A(x) = B(x) + C(x) \Rightarrow C(x) = A(x) - B(x)\)
\(\begin{array}{l}C(x) = A(x) - B(x)\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - ( - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4})\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 + 5{x^2} - 7{x^3} - 5x - 4 + 4{x^4}\\ =(4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)\\= 8{x^4} - 14{x^3} + 11{x^2} - 10x - 10\end{array}\)
Cho hai đa thức:
P(x)=(x+1)(x+3)(x+5)(x+7)+a và Q(x)=x2+8x+9
Tìm giá trị của a để đa thức P(x) chia hết cho đa thức Q(x)
Bài 1. Cho hai đa thức :
A(x)=\(5x^5\)+\(2\)-\(7x\)-\(4x^2\)-\(2x^5\)
B(x)=\(-3x^5\)+\(4x^2\)+\(3x\)-\(7\)
a.)Thu gọn và sắp xếp đa thức A(x) theo lũy thừa giảm dần của biến
b.)Tính A(x)+B(x), A(x)-B(x)
c.)Chứng tỏ x=-1 là nghiệm của đa thức A(x) nhưng không phải là nghiệm của đa thức B(x)
2. Chứng tỏ biểu thức sau không phụ thuộc vào giá trị của biến
M(\(3x\)-\(2\))(\(2x\)+\(1\))-(\(3x\)+\(1\))(\(2x\)-\(1\))
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
\(A(x) = 5x^5 + 2 - 7x - 4x^2 - 2x^5\)
`= (5x^5 - 2x^5) - 4x^2 - 7x + 2`
`= 3x^5 - 4x^2 - 7x + 2`
`b)`
`A(x)+B(x)`
`=`\((3x^5 - 4x^2 - 7x + 2)+(-3x^5 + 4x^2 + 3x - 7)\)
`= 3x^5 - 4x^2 - 7x + 2-3x^5 + 4x^2 + 3x - 7`
`= (3x^5 - 3x^5) + (-4x^2 + 4x^2) + (-7x + 3x) + (2-7)`
`= -4x - 5`
`b)`
`A(x) - B(x)`
`= 3x^5 - 4x^2 - 7x + 2 + 3x^5 - 4x^2 - 3x + 7`
`= (3x^5 + 3x^5) + (-4x^2 - 4x^2) + (-7x - 3x) + (2+7)`
`= 6x^5 - 8x^2 - 10x + 9`
`c)`
Thay `x=-1` vào đa thức `A(x)`
` 3*(-1)^5 - 4*(-1)^2 - 7*(-1) + 2`
`= 3*(-1) - 4*1 + 7 + 2`
`= -3 - 4 + 7 + 2`
`= -7+7 + 2`
`= 2`
Bạn xem lại đề ;-;.
`2,`
`M =` \(( 3 x - 2 )( 2 x + 1 )-( 3 x + 1 )( 2 x - 1 )\)
`= 3x(2x+1) - 2(2x+1) - [3x(2x-1) + 2x - 1]`
`= 6x^2 + 3x - 4x - 2 - (6x^2 - 3x + 2x - 1)`
`= 6x^2 - x - 2 - (6x^2 - x - 1)`
`= 6x^2 - x - 2 - 6x^2 + x + 1`
`= (6x^2 - 6x^2) + (-x+x) + (-2+1)`
`= -1`
Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.
2:
M=6x^2+3x-4x-2-6x^2+3x-2x+1
=-1
1;
a: A(x)=3x^5-4x^2-7x+2
b: B(x)=-3x^5+4x^2+3x-7
B(x)+A(x)
=-3x^5-4x^2-7x+2+3x^5+4x^2+3x-7
=-4x-5
A(x)-B(x)
=-3x^5-4x^2-7x+2-3x^5-4x^2-3x+7
=-6x^5-8x^2-10x+9
Bài `1`
\(a,A\left(x\right)=5x^5+2-7x-4x^2-2x^5\\ =\left(5x^5-2x^5\right)-4x^2-7x+2\\ =3x^5-4x^2-7x+2\)
\(b,A\left(x\right)+B\left(x\right)=3x^5-4x^2-7x+2+\left(-3x^5+4x^2+3x-7\right)\\ =3x^5-4x^2-7x+2-3x^5+4x^2+3x-7\\ =\left(3x^5-3x^5\right)+\left(-4x^2+4x^2\right)+\left(-7x+3x\right)+\left(2-7\right)\\ =-4x-5\)
\(A\left(x\right)-B\left(x\right)=\left(3x^5-4x^2-7x+2\right)-\left(-3x^5+4x^2+3x-7\right)\\ =3x^5-4x^2-7x+2+3x^5-4x^2-3x+7\\ =\left(3x^5+3x^5\right)+\left(-4x^2-4x^2\right)+\left(-7x-3x\right)+\left(2+7\right)\\ =6x^5-8x^2-10x+9\)
`c,` Thay `x=-1` Vào từng biểu thức ta có :
\(A\left(x\right)=3x^5-4x^2-7x+2\\=3\left(-1\right)^5-4.\left(-1\right)^2-7.\left(-1\right)+2\\ =3.\left(-1\right)-4.1-\left(-7\right)+2\\ =-3-4+7+2\\ =2\)
Cậu xem lại đề ạa
\(2,\\ M=\left(3x-2\right)\left(2x+1\right)-\left(3x+1\right)\left(2x-1\right)\\ =6x^2+3x-4x-2-\left(6x^2-3x+2x-1\right)\\=6x^2-x-2-6x^2+3x-2x+1\\ =\left(6x^2-6x^2\right)+\left(-x+3x-2x\right)+\left(-2+1\right)\\ =-1\)
`->` Vậy biểu thức không phụ thuộc vào biến `x`
Cho hai đa thức : P(x) = x^3-2x^2+x-2 Q(x) = 2x^3 - 4x^2+ 3x – 56
a) Tính P(x) - Q(x) b) Chứng tỏ rằng x=2 là nghiệm của cả hai đa thức P(x) và Q(x)
` P(x) = x^3-2x^2+x-2`
`Q(x) = 2x^3 - 4x^2+ 3x – 56`
a) `P(x) -Q(x)`
`= x^3-2x^2+x-2 - 2x^3 +4x^2 -3x +56`
`=(x^3-2x^3) +(4x^2-2x^2) +(x-3x) +(-2+56)`
`= -x^2 +2x^2 -2x +54`
b) Thay `x=2` vào `P(x)` ta đc
`P(2) = 2^3 -2*2^2 +2-2`
`= 8-8+2-2 =0`
Vậy chứng tỏ `x=2` là nghiệm của đa thức `P(x)`
Thay `x=2` vào `Q(x)` ta đc
`Q(2) = 2*2^3 -4*2^2 +3*2-56`
`=16 -16+6-56`
`= -50`
Vậy chứng tỏ `x=2` là ko nghiệm của đa thức `Q(x)`
Bài 5: (1,0đ)
Cho hai đa thức sau:
f(x) = ( x-1)(x+2)
g(x) = x3 + ax2 + bx + 2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
Ta có f(x)=0 <=> \(\left(x-1\right)\left(x+2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên 1 và -2 là nghiệm của đa thức g(x)
+Thay x=1, ta có: \(g\left(1\right)=1^3+a.1^2+b.1+2=0\Leftrightarrow1+a+b+2=0\Leftrightarrow a+b=-3\left(1\right)\)
+Thay x=-2, ta có:
\(g\left(-2\right)=\left(-2\right)^3+a.2^2+b.\left(-2\right)+2=0\Leftrightarrow-8+4a-2b+2=0\Leftrightarrow4a-2b=6\left(2\right)\)
Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}a+b=-3\\4a-2b=6\end{matrix}\right.\)
Giải hệ pt, ta được: a=0, b=-3.
Ta có : f(x) = 0
⇔ ( x-1)(x+2) = 0
⇔ \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên x =1 hoặc x = -2 là nghiệm của g(x)
Thay x = 1 vào g(x) = 0
⇔ 13 + a.12 + b.1 + 2 = 0
⇔ 1 + a + b + 2 = 0
⇔ a + b = -3 (1)
Thay x = -2 vào g(x) = 0
⇔ (-2)3 + a.(-2)2 + b.(-2) + 2 = 0
⇔ -8 + a.4 - 2.b + 2 = 0
⇔ 4a - 2b = 6
⇔ 2.(2a - b ) = 6
⇔ 2a - b = 3 (2)
Từ (1) và (2) ⇒ \(\left\{{}\begin{matrix}a+b=-3\\2a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=0\\b=-3-a\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)
Để f (x) có nghiệm thì : f (x) = 0
=> (x−1)(x+2)=0
\(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy x = 1 và x = −2 là nghiệm của đa thức f (x)
Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = −2 là nghiệm của g (x)
⇒g(1)=13+a⋅12+b⋅1+2=0
⇒1+a+b+2=0
⇒3+a+b=0
⇒b=−3−a (1)
@)
g(−2)=(−2)3+a⋅(−2)2+b⋅(−2)+2=0
⇒−8+4a−2b+2=0
⇒2⋅(−4)+2a+2a−2b+2=0
⇒2⋅(−4+a+a−b+1)=0
⇒(−3+2a−b)=0
=> 2a − b = 3 (2)
thay (1) vao (2) ta dc
2a−(−3−a)=3
⇒a=0
Do 2a−b=3
⇒b=−3Vậy a = 0 ; b = −3
1) Cho hai đa thức: P=(x-1)(x+2)(x+4)(x+7)+2070 và Q=x2+6x+2
Tìm số dư của phép chia đa thức P cho đa thức Q
2) Cho biểu thức A=(x^2+6x+5)/(x^2+2x-15). Tìm số nguyên x để biểu thức A đạt giá trị nguyên
Cho hai đa thức:
\(\begin{array}{l}A = {x^3} + \dfrac{3}{2}x - 7{x^4} + \dfrac{1}{2}x - 4{x^2} + 9\\B = {x^5} - 3{x^2} + 8{x^4} - 5{x^2} - {x^5} + x - 7\end{array}\)
a) Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm của biến.
b) Tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đã cho.
a)
\(\begin{array}{l}A(x) = {x^3} + \dfrac{3}{2}x - 7{x^4} + \dfrac{1}{2}x - 4{x^2} + 9\\ = - 7{x^4} + {x^3} - 4{x^2} + \left( {\dfrac{3}{2}x + \dfrac{1}{2}x} \right) + 9\\ = - 7{x^4} + {x^3} - 4{x^2} + 2x + 9\\B(x) = {x^5} - 3{x^2} + 8{x^4} - 5{x^2} - {x^5} + x - 7\\ = \left( {{x^5} - {x^5}} \right) + 8{x^4} + \left( { - 3{x^2} - 5{x^2}} \right) + x - 7\\ = 0 + 8{x^4} + ( - 8{x^2}) + x - 7\\ = 8{x^4} - 8{x^2} + x - 7\end{array}\)
b) * Đa thức A(x):
+ Bậc của đa thức là: 4
+ Hệ số cao nhất là: -7
+ Hệ số tự do là: 9
* Đa thức B(x):
+ Bậc của đa thức là: 4
+ Hệ số cao nhất là: 8
+ Hệ số tự do là: -7
Bài 3 : (2 điểm) Cho hai đa thức : A(x) = 2 x3 + 5 + x2 –3 x –5x3 –4
B(x) = –3x4 – x3 + 2x2 + 2x + x4 – 4–x2 .
a) Thu gọn 2 đa thức trên.
b) Tính H(x) = A(x) – B(x)
a) A(x) = 2x3 + 5 + x2 - 3x - 5x3 - 4
= 2x3 - 5x3 + x2 - 3x + 5 - 4
= -3x3 + x2 - 3x + 1
B(x) = -3x4 - x3 + 2x2 + 2x + x4 - 4 - x2
= -3x4 + x4 - x3 + 2x2 - x2 + 2x - 4
= -2x4 - x3 + x2 + 2x - 4
b)
H(x) = A(x) - B(x)
H(x) = (-3x3 + x2 - 3x + 1) - (-2x4 - x3 + x2 + 2x - 4)
= -3x3 + x2 - 3x + 1 + 2x4 + x3 - x2 - 2x + 4
= 2x4 - 3x3 + x3 + x2 - x2 - 3x - 2x + 1 + 4
= 2x4 - 2x3 -5x + 5
a) A(x)=(2x3-5x3) +(5-4) + x2- 3x
=-3x3+1+x2-3x
B(x)=(-3x4+x4) - x3+(2x2-x2) +2x - 4
=-2x4-x3+x2+2x - 4
b) A(x) - B(x) = (-3x3+1+x2-3x) - (-2x4-x3+x2+2x - 4)
= -3x3+1+x2-3x - 2x4+x3-x2-2x + 4
=(-3x3+x3) + (1+4) + (+x2-x2) + (-3x-2x) - 2x4
=-2x3 + 5 - 5x -2x4
cho hai đa thức p (x) =5 (x) =5x^3-3x+7-xvà Q(x)=5x^3+2x-3+2x-x^2-2
a) thu gọn hai đợn thức p(x)vàQ(x)
b) tìm đa thức M(x)=P(x)+Q(x) và n(x) = p(x) -Q(x)
c) tìm ngiệm của đa thức M(x)
a, Ta có : \(P\left(x\right)=5x^3-3x+7-x=5x^3-4x+7\)
\(Q\left(x\right)=5x^3+2x-3+2x-x^2-2=5x^3-x^2+4x-5\)
b, Ta có : \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
hay \(5x^3-4x+7+5x^3-x^2+4x-5=10x^3-x^2+2\)
Ta có ; \(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)
hay \(5x^3-4x+7-5x^3+x^2-4x+5=x^2-8x+12\)
c, phải là tìm nghiệm N(x) chứ ?
ngịêm là m mà vì đề bài Q(x)=-5x^3
Bài 1 . cho hai đa thức: P(x) = 4x4 - 2x3 - 7x2 + 2x + 1/3 và Q(x) = x4 + 3x3 - 6x2 - x - 1/4
a. Tính P(x) + Q(x);
b. Tính P(x) - Q(x).
Bài 2. cho đa thức: M(x) = x2 - 2x3 + x + 5 và N(x) = 2x3 - x - 6
a. Tính M(2)
b. Tìm đa thức A(x) sao cho A(x) = M(x) + N(x); A(x), tính B(x) = M(x) - N(x)
c. Tìm nghiệm của đa thức A(x)
Bài 3. Tìm nghiệm của các đa thức sau:
a. 2x - 8 b. 2x + 7 c. 4 - x2 d. 4x2 - 9
e. 2x2 - 6 f. x(x - 1) g. x + 2x h. x( x + 2 )
Bài 4. cho hai đa thức: f(x) = 2x4 + 3x2 - x + 1 - x2 - x4 - 6x3
g(x) = 10x3 + 3 - x4 - 4x3 + 4x - 2x2
a. Thu gọn đa thức: f(x), g(x) và sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến.
b. Tính h(x) = f(x) + g(x); K(x) = f(x) - g(x)
c. Tìm nghiệm của đa thức h(x)
Bài 5. Tìm nghiệm của các đa thức:
a. 9 - 3x b. -3x + 4 c. x2 - 9 d. 9x2 - 4
e. x2 - 2 f. x( x - 2 ) g. x2 - 2x h. x(x2 + 1 )
Tách ra, dài quá mn đọc là mất hứng làm đó.