Cho M = ( x 4 y n + 1 − 1 2 x 3 y n + 2 ) : ( 1 2 x 3 y n ) − 20 x 4 y : 5 x 2 y (n Є N, x;y ≠ 0)
Chọn câu đúng
A. Giá trị của M luôn là số âm
B. Giá trị của M luôn là số dương
C. Giá trị của M luôn bằng 0
D. Giá trị của M luôn bằng 1
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
Chứng minh:
a, 3x2—3xy—6x+6y= 3(x—y)(x—2)
b,(x+y)2—4=(x+y—4)(x+y+4)
c,M=n2(n+1)+2n(n+1) M chia hết cho 4 giúp mk vs mai pk nộp rùi
a)Ta có :
3x2-3xy-6x-6y=3(x2-xy-2x+2y)
=3[x(x-y)-2(x-y)]
=3(x-y)(x-2) (đpcm)
1. Bỏ ngoặc bằng tính chất phân phối: (x-y)×(x+y)-(y-x)×y với x,y ∈ Z
2.tìm các số nguyên x sao cho:
a) 4(x+1) - (3x+1) =14
b) 3|x+1|+1=28
3. Tìm các số nguyên thỏa hệ thức : (x-1)×(3-y)= -7
4. Tìm các số nguyên n sao cho:
a) n+5 chia hết cho n+2
b) 2n+1 chia hết cho n-5
Câu 2:
a: =>4x+4-3x-1=14
=>x+3=14
hay x=11
b: \(\Leftrightarrow3\left|x+1\right|=27\)
=>|x+1|=9
=>x+1=9 hoặc x+1=-9
=>x=8 hoặc x=-10
1. Cho x,y thoả mãn đk 2x2+ 1/x2+ y2/4 = 4. Tìm GTNN của x,y
1.cho p,q nguyên tố tìm x,y ∈ N*thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{pq}\)
2.tìm x,y ∈ Z, p nguyên tố thỏa mãn \(x^4+4=p.y^4\)
1.cho p,q nguyên tố tìm x,y ∈ N*thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{pq}\)
2.tìm x,y ∈ Z, p nguyên tố thỏa mãn \(x^4+4=p.y^4\)
Cho x , y thỏa mãn : x + y = 2 . Tìm min của đa thức
A = ( 1 + x4 )( 1 + y4 ) + 4( xy - 1 )( 3xy - 1 )
-Nguồn: Tìm giá trị nhỏ nhất của - Bài tập Toán học Lớp 8 - | Lazi.vn - Kết nối tri thức - Giải đáp vấn đề của bạn
-Cách khác tham khảo :Câu hỏi tương tự
Bài hơi nhiều n cũng mong mn làm hết cho m . thanks
Bài 9:
a, (x+3)(x+4)
b,(x-4)(x2+4x+16)
c,(xy2-1)(x2y+5)
d,4(x-1/2)(x+1/2)(4x2+1)
Bài 10:
Cho biểu thức:
P=(m2-2m+4)(m+2)-m3+(m+3)(m-3)-m2 -18
CM biểu thức P=(x+y)3 -9(x+y)2 +27(x+y)-27
ko thuộc vào m
Bài 11:
a, (x2+2x+4)(2-x)+x(x-3)(x+4)-x2+24=0
b, (x/2+3)(5-6x)+(12x-2)(x/4+3)=0
Bài 12:
CM rằng với mọi x,y ta luôn có:
(x4-x3y+x2y2-xy3+y4)(x+y)=x5+y5
Bài 13:
Tìm 2 số lẻ liên tiếp , biết bình phương của số lớn, lớn hơn bình phương của số nhỏ là 80 đơn vị
Bài 14*:
Cho a và b là 2 số tự nhiên thỏa mãn (a+3) và (b+4) cùng chia hết cho 5. CM a2+b2 cũng chia hết cho 5.
c)\(\left(xy^2-1\right)\left(x^2y+5\right)\)
\(=x^3y^3+5xy^2-x^2y-5\)
d)\(4\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)\left(4x^2+1\right)\)
\(=4\left(x^2-\dfrac{1}{4}\right)\left(4x^2+1\right)\)
\(=4\left(4x^4+x^2-x-\dfrac{1}{4}\right)\)
\(=16x^4+4x^2-4x-1\)
Bài 9
a)\(\left(x+3\right)\left(x+4\right)\) b)\(\left(x-4\right)\left(x^2+4x+16\right)\)
\(=x^2+4x+3x+12\) \(=\left(x-4\right)\left(x^2+x.4+4^2\right)\)
\(=x^2+7x+12\) \(=x^3-4^3=x^3-64\)
bài 13
Tìm 2 số lẻ liên tiếp,biết bình phương số lơn lớn hơn bình phương số nhỏ là 80 đơn vị
2 số lẻ liên tiếp,biết bình phương số lơn lớn hơn bình phương số nhỏ là 80 đơn vị là :
19^2 và 21^2
1 . cho x ,y m z thuộc Q
với x = a/b , y = c/d , z = m/n
trong đó m= a+c/2 , n = b+d/2 .
so sánh x với z , y với z .
2. cho a<b<c<d<m<n đều là số nguyên :
chứng minh : a+b+c/ a+b+c+d+m+n < 1/2 .
3. tính :
1 - 1/2 + 2 - 2/3 + 3 - 3/4 + 4 - 1/4 - 3 - 1/3 - 2 - 1/2 - 1
1) cho hai số thực dương x,y thỏa nãm x+y =1 tìm min của S= \(\dfrac{1}{x}+\dfrac{4}{y}\)
2) cho hai số thực x,y thỏa mãn \(x^2+y^2-3\left(x+y\right)=-4\) tập giá trị của biểu thức S= x+y bằng bao nhiêu
1/
\(S=\dfrac{1}{x}+\dfrac{2^2}{y}\ge\dfrac{\left(1+2\right)^2}{x+y}=\dfrac{9}{1}=9\)
\(\Rightarrow S_{min}=9\) khi \(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{2}{y}\\x+y=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
2/
Áp dụng BĐT: \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Rightarrow\dfrac{\left(x+y\right)^2}{2}-3\left(x+y\right)\le x^2+y^2-3\left(x+y\right)=-4\)
\(\Rightarrow\dfrac{\left(x+y\right)^2}{2}-3\left(x+y\right)+4\le0\Leftrightarrow\left(x+y\right)^2-6\left(x+y\right)+8\le0\)
Đặt \(x+y=a\Rightarrow a^2-6a+8\le0\Rightarrow2\le a\le4\)
\(\Rightarrow2\le x+y\le4\)
\(\Rightarrow S\in\left[2;4\right]\)