Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quang Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 4 2023 lúc 21:23

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE

b: góc ADE=180-60=120 độ

=>góc EDC=60 độ

Quang Minh
Xem chi tiết
Kiều Vũ Linh
3 tháng 5 2023 lúc 7:51

loading...  

a) Xét hai tam giác vuông: ∆ABD và ∆EBD có:

∠ABD = ∠EBD (BD là phân giác của B)

BD chung

⇒ ∆ABD = ∆EBD (cạnh huyền - góc nhọn)

⇒ BA = BE (hai cạnh tương ứng)

b) Do ∆ABC vuông tại A

⇒ ∠B + ∠C = 90⁰

⇒ ∠C = 90⁰ - ∠B

= 90⁰ - 60⁰

= 30⁰

∆DEC vuông tại E có

∠C = 30⁰

∠EDC + ∠C = 90⁰

⇒ ∠EDC = 90⁰ - ∠C

= 90⁰ - 30⁰

= 60⁰

Quách An An
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 2 2023 lúc 8:16

a: góc C=90-60=30 độ

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

=>ΔBAE=ΔBHE

=>góc ABE=góc HBE

=>BE là phân giác của góc ABC

c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEK=góc HEC
=>ΔEAK=ΔEHC

=>EK=EC và AK=HC

mà BA=BH

nên BK=BC

mà EK=EC

nên BE là trung trực của KC

=>BE vuong góc KC

Vi Lê
Xem chi tiết
Nguyen Tien Hoc
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 1 2022 lúc 15:06

a: \(\widehat{C}=90^0-60^0=30^0\)

b: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: \(\widehat{BAD}=\widehat{BED}=90^0\)

hay DE⊥CB

Bảo Chi
Xem chi tiết
Bảo Chi
20 tháng 2 2020 lúc 21:17

GIÚP MÌNH VỚI CÁC BẠN ƠI!!!

ARIGATO!!!

Khách vãng lai đã xóa
Hoa Thiên Cốt
Xem chi tiết

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

Khách vãng lai đã xóa
Nguyen Huynh Xuan Vy
Xem chi tiết
Nguyễn Huyền Trang
Xem chi tiết
Akai Haruma
23 tháng 2 2023 lúc 0:08

Lời giải:
Ta thấy:

Xét tam giác vuông tại $H$ là $ABH$ có $\widehat{B}+\widehat{BAH}=90^0$ 

Xét tam giác vuông $BAC$ có: $\widehat{BAH}+\widehat{HAC}=\widehat{BAC}=90^0$

$\Rightarrow \widehat{B}+\widehat{BAH} = \widehat{BAH}+\widehat{HAC}$

$\Rightarrow \widehat{HAC}=\widehat{B}=60^0$