Giải các phương trình sin 4 x = 2 3
Giải các phương trình sau. π 1. 2sin( x − ) − 2 = 0 . 4 2. sin 2 x − 2 3 sin 2 x − cos x + 3 sin x = 0 .
giúp em với adim
lớp 11
giải phương trình sin^2 x − 4√3 sin x · cos x + cos^2 x = −2.
Với \(cosx=0\) ko phải nghiệm
Với \(cosx\ne0\) chia 2 vế cho \(cos^2x\)
\(\Rightarrow tan^2x-4\sqrt{3}tanx+1=-2\left(1+tan^2x\right)\)
\(\Leftrightarrow3tan^2x-4\sqrt{3}tanx+3=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=\dfrac{\sqrt{3}}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\\x=\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)
giải các phương trình sau :
1. sin( x+\(\pi\)/4)=2/3
2.cos2x-5sinx-3=0
3.cos3x=sin2x
4.cos3x=-\(\sqrt{ }\)3 với -\(\pi\)/2<x<0
5.4sin\(^4\)x + 12cos\(^2\)x=7
6.cot(x-1)=(cos2x)/(1+tanx) + sin\(^2\)x - 1/2sin2x
7.sin\(^2\)3x-cos\(^2\)4x=sin\(^2\)5x-cos\(^2\)6x
Giải phương trình
\(\left(2\cos x+\sqrt{3}\right)\left(\cos2x+2\sin x-\sqrt{3}\right)=1-4\sin^2x\)
\(\left(2cosx+\sqrt{3}\right)\left(cos2x+2sinx-\sqrt{3}\right)=1-4\left(1-cos^2x\right)\)
\(\Leftrightarrow\left(2cosx+\sqrt{3}\right)\left(cos2x+2sinx-\sqrt{3}\right)=4cos^2x-3\)
\(\Leftrightarrow\left(2cosx+\sqrt{3}\right)\left(cos2x+2sinx-\sqrt{3}\right)=\left(2cosx+\sqrt{3}\right)\left(2cosx-\sqrt{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\dfrac{\sqrt{3}}{2}\Rightarrow x=...\\cos2x+2sinx-\sqrt{3}=2cosx-\sqrt{3}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cos^2x-sin^2x-2\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx\right)-2\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx-2\right)=0\)
\(\Leftrightarrow...\)
- Giải phương trình : cos ( x - \(_{^{ }15}o\)) = \(\frac{\sqrt{2}}{2}\)
- Giải các phương trình sau và tìm các nghiệm trong đoạn [ 0;π ]
1. sin ( 3x+1)=sin(x-2)
2. sin ( x - \(^{120^o}\) )+ cos2x=0
3. sin3x + sin ( \(\frac{\pi}{4}\) - \(\frac{x}{2}\) ) = 0
Giải phương trình: \(Sin^4\left(\dfrac{x}{2}\right)-Sin^2\dfrac{x}{2}\left(Sinx+3\right)+Sinx+2=0\)
Giải phương trình \(Sin^4\left(\dfrac{x}{2}\right)-Sin^2\dfrac{x}{2}\left(Sinx+3\right)+Sinx+2=0\)
- Đặt \(\left\{{}\begin{matrix}\sin^2\dfrac{x}{2}=a\\\sin x+3=b\end{matrix}\right.\)
\(PTTT:a^2-ab+b-1=0\)
\(\Leftrightarrow-b\left(a-1\right)+\left(a-1\right)\left(a+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+1-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a-b=-1\end{matrix}\right.\)
- Thay lại vào phương trình ta được :\(\left[{}\begin{matrix}\sin^2\dfrac{x}{2}=1\\\sin^2\dfrac{x}{2}-\sin x-3=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sin^2\dfrac{x}{2}=1\\\dfrac{1-\cos x}{2}-\sin x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sin^2\dfrac{x}{2}=1\\\cos x+2\sin x=-3\end{matrix}\right.\)
Thấy : \(-\sqrt{5}\le2\sin x+\cos x\le\sqrt{5}\)
\(\Rightarrow2\sin x+\cos x=-3\left(L\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\sin\dfrac{x}{2}=1\\\sin\dfrac{x}{2}=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=\dfrac{\pi}{2}+k2\pi\\\dfrac{x}{2}=-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k4\pi\\x=-\pi+k4\pi\end{matrix}\right.\)\(\left(K\in Z\right)\)
Vậy ....
Giải phương trình \(2\sin7x.\sin x+8\sin^42x+\sqrt{3}\sin6x=4\left(1-\cos4x\right)\)
\(\Leftrightarrow cos6x-cos8x+2\left(1-cos4x\right)^2+\sqrt{3}sin6x=4-4cos4x\)
\(\Leftrightarrow cos6x-cos8x+2\left(1+cos^24x-2cos4x\right)+\sqrt{3}sin6x=4-4cos4x\)
\(\Leftrightarrow cos6x-cos8x+cos8x+3-4cos4x+\sqrt{3}sin6x=4-4cos4x\)
\(\Leftrightarrow cos6x+\sqrt{3}sin6x=1\)
\(\Leftrightarrow cos\left(6x-\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow...\)
Giải phương trình lượng giác sau:
\(sin\left(\dfrac{x}{3}-\dfrac{\pi}{4}\right)=cos\left(\dfrac{\pi}{2}-x\right)\)
\(sin^22x=sin^23x\)
a: \(\Leftrightarrow sin\left(\dfrac{x}{3}-\dfrac{pi}{4}\right)=sinx\)
=>x/3-pi/4=x+k2pi hoặc x/3-pi/4=pi-x+k2pi
=>2/3x=-pi/4+k2pi hoặc 4/3x=5/4pi+k2pi
=>x=-3/8pi+k3pi hoặc x=15/16pi+k*3/2pi
b: =>(sin3x-sin2x)(sin3x+sin2x)=0
=>sin3x-sin2x=0 hoặc sin 3x+sin 2x=0
=>sin 3x=sin 2x hoặc sin 3x=sin(-2x)
=>3x=2x+k2pi hoặc 3x=pi-2x+k2pi hoặc 3x=-2x+k2pi hoặc 3x=pi+2x+k2pi
=>x=k2pi hoặc x=pi/5+k2pi/5 hoặc x=k2pi/5 hoặc x=pi+k2pi
Giải các phương trình sau :
a) \(\cos^2x+2\sin x\cos x+5\sin^2x=2\)
b) \(3\cos^2x-2\sin2x+\sin^2x=1\)
c) \(4\cos^2x-3\sin x\cos x+3\sin^2x=1\)