Cho hai đa thức P ( x ) = 3 x 2 + 5 x - 1 , Q ( x ) = 3 x 2 + 2 x + 2 . Nghiệm của đa thức P ( x ) - Q ( x ) là:
A. x = 1
B. x = 2
C. x = 3
D. x = -1
bài 1: cho hai đa thức f(x) = -x + 2x^2 - 1/2 + 3x^5 + 5
g(x) = 3-x^5 + 1/3x^3 + 3x - 2x^5 - 2x^2 - 1/3x^3
a) thu gọn và sắp xếp hai đa thức f(x) và g(x) theo lũy thừa giảm dần của biến
b) tính f(x) + g(x)
c) tìm nghiệm của đa thức h(x) = f(x) + g(x)
cho hai đa thức:
f(x)=-x+2x^2-1/2+3x^5+5 và g(x)=3-x^5+1/3x^3+3x-2x^5-2x^2-1/3x^3
a)thu gọn và sắp xếp 2 đa thức trên theo lũy thừa giảm dần của biến
b) Tính f(x)+g(x)
c) Tìm ngiệm của đa thức
h(x)=f(x)+g(x)
Cho hai đa thức:
P(x)=(x+1)(x+3)(x+5)(x+7)+a và Q(x)=x2+8x+9
Tìm giá trị của a để đa thức P(x) chia hết cho đa thức Q(x)
Bài 1 . cho hai đa thức: P(x) = 4x4 - 2x3 - 7x2 + 2x + 1/3 và Q(x) = x4 + 3x3 - 6x2 - x - 1/4
a. Tính P(x) + Q(x);
b. Tính P(x) - Q(x).
Bài 2. cho đa thức: M(x) = x2 - 2x3 + x + 5 và N(x) = 2x3 - x - 6
a. Tính M(2)
b. Tìm đa thức A(x) sao cho A(x) = M(x) + N(x); A(x), tính B(x) = M(x) - N(x)
c. Tìm nghiệm của đa thức A(x)
Bài 3. Tìm nghiệm của các đa thức sau:
a. 2x - 8 b. 2x + 7 c. 4 - x2 d. 4x2 - 9
e. 2x2 - 6 f. x(x - 1) g. x + 2x h. x( x + 2 )
Bài 4. cho hai đa thức: f(x) = 2x4 + 3x2 - x + 1 - x2 - x4 - 6x3
g(x) = 10x3 + 3 - x4 - 4x3 + 4x - 2x2
a. Thu gọn đa thức: f(x), g(x) và sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến.
b. Tính h(x) = f(x) + g(x); K(x) = f(x) - g(x)
c. Tìm nghiệm của đa thức h(x)
Bài 5. Tìm nghiệm của các đa thức:
a. 9 - 3x b. -3x + 4 c. x2 - 9 d. 9x2 - 4
e. x2 - 2 f. x( x - 2 ) g. x2 - 2x h. x(x2 + 1 )
Tách ra, dài quá mn đọc là mất hứng làm đó.
1. Cho hai đa thức: R(x)=-8(x^4)+6(x^3)+2(x^2)+5x-1 và S(x)=(x^4)-8(x^3)+2x+3. Tính: a) R(x)+S(x); b) R(x)-S(x). 2. Xác định bậc của hai đa thức là tổng, hiệu của: A(x)=8(x^5)+6(x^4)+2(x^2)-5x+1 và B(x)=8(x^5)+8(x^3)+2x-3.
Mn giúp mình nha mình cảm ơn nhiều
Câu 2: Cho hai đa thức : P(x) = x^4 + x^3 – 2x + 1 Q(x) = 2x^2 – 2x^3 + x – 5 a) Tìm bậc của hai đa thức b) Tính P(x) + Q(x) và P(x) – Q(x)
a) Bậc P(x) = 4 + 3 + 1 = 8
Bậc của Q (x) = 2 + 3 + 1 = 6
b) P(x) + Q ( x) = x4 + x3 -2x + 1 + 2x2 -2x3 + x- 5
= x4 -x3 + 2x2 -x - 4
P(x) - Q (x) = x4 +x3 -2x + 1 - 2x2 -2x3 + x - 5
= x4 + 3x 3 -2x2 - 3x + 6
a) Bậc của đa thức P(x) là: 4+3+1=8
Bậc xủa đa thức Q(x) là: 2+3+1=6
b) P(x)+Q(x)=(x4+x3-2x+1)+(2x2-2x3+x-5)
P(x)+Q(x)=x4+x3-2x+1+2x2-2x3+x-5
P(x)+Q(x)=x4-x3+2x2-x-4
P(x)-Q(x)=(x4+x3-2x+1)-(2x2-2x3+x-5)
P(x)-Q(x)=x4+x3-2x+1-2x2+2x3-x+5
P(x)-Q(x)=x4+3x3-2x2-3x+6
cho hai đa thức P(x)=x^2-5x-3x^5-7x^3+2
Q(x)=x^3-6x-x^2-4x^5-x^4
a)Sắp xếp các hảng tử của mỗi đa thức trên theo luỹ thừa tăng dần của biến
b)Tìm bậc của đa thức.c)Tính P(x)+Q(x) và P(x)-Q(x) d)Tính Q(-1)
a. P(x) = -3x5 - 7x3 + x2 - 5x + 2
Q(x) = -4x5 - x4 + x3 - x2 - 6x
b. Đa thức P(x) và Q(x) có bậc là 5
d. Q(-1) = -4(-1)5 - (-1)4 + (-1)3 - (-1)2 - 6(-1)
= -4.(-1) + 1 + 1 - 1 + 1 - 6.(-1)
= 12
a) Ta có: \(P\left(x\right)=x^2-5x-3x^5-7x^3+2\)
\(=-3x^5-7x^3+x^2-5x+2\)
Ta có: \(Q\left(x\right)=x^3-6x-x^2-4x^5-x^4\)
\(=-4x^5-x^4+x^3-x^2-6x\)
b) Bậc của đa thức P(x) là 5
Bậc của đa thức Q(x) là 5
Cho hai đa thức $P(x)=x^4-5 x^3+4 x-5$ và $Q(x)=-x^4+3 x^2+2 x+1$.
a) Hãy tìm tổng $P(x)+Q(x)$.
b) Tìm đa thức $R(x)$ sao cho $P(x)=R(x)+Q(x)$.
a. \(x^4-5x^3+4x-5-x^4+3x^2+2x+1\)
\(=-5x^3+3x^2+6x-4\)
b. \(R\left(x\right)=x^4-5x^3+4x-5-\left(-x^4+3x^2+2x+1\right)\)
\(=x^4-5x^3+4x-5+x^4-3x^2-2x-1\)
\(=2x^4-5x^3-3x^2+2x-6\)
a, P(x) + Q (x)=(x4- 5x3 +4x -5) + ( -x4 + 3X2 +2x + 1)
= x4 -5x3 + 4x - 5 - x4 +3x2 + 2x + 1
= ( x4 - x4) + ( 4x + 2x) + ( -5 +1 ) - 5x3
= 0 + 6x + 4 -5x3
= -5x3 + 6x + 4
b, Do P(x) = R(x) + Q(x )
nên R(x )=P(x) - Q(x)
P(x) - Q(x) = (x4 - 5x3 + 4x - 5) - ( -x4 + 3x2 +2x + 1)
= x4 - 5x3 + 4x -5 + x4 - 3x2 - 2x -1
= ( x4 + x4) + ( 4x -2x) + (-5 - 1) -5x3
=2x4 + 2x -6 - 5x3
= 2x4 -5x3 + 2x - 6
Vậy đa thức R(x) là 2x4 - 5x3 +2x - 6
Cho hai đa thức:
\(\begin{array}{l}A = {x^3} + \dfrac{3}{2}x - 7{x^4} + \dfrac{1}{2}x - 4{x^2} + 9\\B = {x^5} - 3{x^2} + 8{x^4} - 5{x^2} - {x^5} + x - 7\end{array}\)
a) Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm của biến.
b) Tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đã cho.
a)
\(\begin{array}{l}A(x) = {x^3} + \dfrac{3}{2}x - 7{x^4} + \dfrac{1}{2}x - 4{x^2} + 9\\ = - 7{x^4} + {x^3} - 4{x^2} + \left( {\dfrac{3}{2}x + \dfrac{1}{2}x} \right) + 9\\ = - 7{x^4} + {x^3} - 4{x^2} + 2x + 9\\B(x) = {x^5} - 3{x^2} + 8{x^4} - 5{x^2} - {x^5} + x - 7\\ = \left( {{x^5} - {x^5}} \right) + 8{x^4} + \left( { - 3{x^2} - 5{x^2}} \right) + x - 7\\ = 0 + 8{x^4} + ( - 8{x^2}) + x - 7\\ = 8{x^4} - 8{x^2} + x - 7\end{array}\)
b) * Đa thức A(x):
+ Bậc của đa thức là: 4
+ Hệ số cao nhất là: -7
+ Hệ số tự do là: 9
* Đa thức B(x):
+ Bậc của đa thức là: 4
+ Hệ số cao nhất là: 8
+ Hệ số tự do là: -7
Bài 4. Cho hai đa thức: P(x) = (4x + 1 - x ^ 2 + 2x ^ 3) - (x ^ 4 + 3x - x ^ 3 - 2x ^ 2 - 5) Q(x) = 3x ^ 4 + 2x ^ 5 - 3x - 5x ^ 4 - x ^ 5 + x + 2x ^ 5 - 1 a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm, dần của biển. b) Tính P(x) + 20(x) 3P(x) + 0(x)
Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1
a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)
\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)
\(=-x^4+3x^3+x^2+x+6\)
\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)
\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)
\(=-x^5-2x^4-2x-1\)
b: Bạn ghi lại đề đi bạn