biết ab=6 chứng minh \(\frac{a^2+b^2}{\left(a-b\right)}\ge4\sqrt{3}\) [ ( ) là tị tuyệt đối nha ]
biết ab=6 .chứng minh \(\frac{a^2+b^2}{\left(a-b\right)}\ge4\sqrt{3}\) ( ) là trị tuyệt đối nha
\(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\frac{\left(\left|a-b\right|\right)^2+12}{\left|a-b\right|}\)
Đặt \(t=\left|a-b\right|>0\),
Cần CM: \(\frac{t^2+12}{t}\ge4\sqrt{3}\Leftrightarrow t^2+12\ge4\sqrt{3}t\Leftrightarrow\left(t-\sqrt{12}\right)^2\ge0\text{ (đúng }\forall t>0\text{)}\)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
cho a b và ab = 6 chứng minh \(\frac{a^2+b^2}{\left|a-b\right|}\ge4\sqrt{3}\)
Ta có:
\(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\frac{\left|a-b\right|^2+12}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\ge2\sqrt{12}=4\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}ab=6\\\left|a-b\right|=\frac{12}{\left|a-b\right|}\end{cases}}\) Em tự tìm a và b nhé!
Cho a , b biết ab = 6 . Chứng minh rằng : \(\dfrac{a^2+b^2}{\left|a-b\right|}\ge4\sqrt{3}\)
Lời giải:
Do $ab=6$ nên \(a^2+b^2=(a-b)^2+2ab=(a-b)^2+12\)
Đặt \(|a-b|=t(t>0)\). Khi đó:
\(\frac{a^2+b^2}{|a-b|}=\frac{(a-b)^2+12}{|a-b|}=\frac{t^2+12}{t}=\frac{t^2-4\sqrt{3}t+12}{t}+4\sqrt{3}\)
\(=\frac{(t-2\sqrt{3})^2}{t}+4\sqrt{3}\geq 4\sqrt{3}\) với mọi \(t>0\)
Ta có đpcm
Dấu "=" xảy ra khi \(\left\{\begin{matrix} ab=6\\ |a-b|=t=2\sqrt{3}\end{matrix}\right.\)
Lời giải hoành tránh
loại trên mây có biết sai ở đâu không
nếu là lời giải của hs lớp 6 thì tạm chấp nhận
lời giải của GV chửi cho ngu như con BÒ . nếu không muôn chửi là ngu thì sửa lời giải đi
mà loại mày Akai Harumasao biết sai ở đâu mà sửa
Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1
Chứng minh rằng : \(\frac{1}{\sqrt{\left(a^2+ab+b^2\right)\left(b^2+bc+c^2\right)}}+\frac{1}{\sqrt{\left(b^2+bc+c^2\right)\left(c^2+ca+a^2\right)}}+\frac{1}{\sqrt{\left(c^2+ca+a^2\right)\left(a^2+ab+b^2\right)}}\ge4+\frac{8}{\sqrt{3}}\)
Cộng tác viên giúp với !
ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng
Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.
cho a,b và ab=6 . Chứng minh rằng \(\frac{a^2+b^2}{\left|a-b\right|}\ge4\sqrt{3}\)
ai làm đúng mik tick
fan FA chó cái cục shit nhà bạn :))
\(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\)
Áp dụng BĐT AM-GM cho 2 số không âm:
\(VT\ge2\sqrt{\left|a-b\right|\cdot\frac{12}{\left|a-b\right|}}=4\sqrt{3}\)
Dấu "=" tự xét.
Ta có
\(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\)
áp dụng bất đẳng thức Cô si
\(\left|a-b\right|+\frac{12}{\left|a-b\right|}\ge2\sqrt{\left|a-b\right|.\frac{12}{\left|a-b\right|}}=4\sqrt{3}\)
lại bất giải thưởng tháng r . thằng nào hack của t giả đi .WHy not me nè
cho a, b và ab = 6 . Chứng minh rằng : \(\frac{a^2+b^2}{\left|a-b\right|}\ge4\sqrt{3}\)
AI GIẢI NHANH MIK TICK CHO 3 CÁI , OK , MIK CẦN GẤP , GIÚP NHÉ , CẢM ƠN TRƯỚC NHA ....
bạn lên học 24h nha , ở đó giáo viên sẽ giải cho bạn
bài này chỉ cần áp dụng bất đẳng thức cô -si là được thôi
ta có \(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\)
áp dụng bất đẳng thức cô -si ta được :
\(\left|a-b\right|+\frac{12}{\left|a-b\right|}\ge2\sqrt{\left|a-b\right|+\frac{12}{\left|a-b\right|}}=4\sqrt{3}\)(dpcm)
em chưa hok
Cho a,b và ab=6. Chứng minh \(\dfrac{a^2+b^2}{\left|a-b\right|}\ge4\sqrt{3}\)
Lời giải:
Bổ sung điều kiện $a\neq b$
Ta có: $\frac{a^2+b^2}{|a-b|}\geq 4\sqrt{3}$
$\Leftrightarrow a^2+b^2\geq 4\sqrt{3}|a-b|$
$\Leftrightarrow (a-b)^2+2ab-4\sqrt{3}|a-b|\geq 0$
$\Leftrightarrow |a-b|^2+12-4\sqrt{3}|a-b|\geq 0$
$\Leftrightarrow (|a-b|-2\sqrt{3})^2\geq 0$ (luôn đúng)
Do đó ta có đpcm.
Dấu "=" xảy ra khi $|a-b|=2\sqrt{3}$ và $ab=6$ hay $(a,b)=(3+\sqrt{3}, 3-\sqrt{3})$ và hoán vị
cho a;b;c là các số thực dương.CMR:\(\frac{a+b}{\sqrt{ab+c^2}}+\frac{b+c}{\sqrt{bc+a^2}}+\frac{c+a}{\sqrt{ca+b^2}}\ge4\sqrt{1+\frac{3abc}{\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3}}\)
mình hướng dẫn thôi được không chứ mình đá bóng bị ngã nên giờ bấm giải chi tiết không nổi
thôi mình sẽ giải chi tiết luôn nhé chứ hướng dẫn khó hiểu lắm
đặt cái vế trái là A. Ta có:
\(A=a\left(\frac{1}{\sqrt{ab+c^2}}+\frac{1}{\sqrt{ac+b^2}}\right)+b\left(\frac{1}{\sqrt{ab+c^2}}+\frac{1}{\sqrt{bc+a^2}}\right)+c\left(\frac{1}{\sqrt{ac+b^2}}+\frac{1}{\sqrt{bc+a^2}}\right)\)
\(\Rightarrow A\ge4\left(\frac{a}{\sqrt{ab+c^2}+\sqrt{ac+b^2}}+\frac{b}{\sqrt{ab+c^2}+\sqrt{bc+a^2}}+\frac{c}{\sqrt{ac+b^2}+\sqrt{bc+a^2}}\right)\)
Cho a,b,c là các số thực dương thỏa mãn rằng \(a+b+c=3\) . Chứng minh rằng:
\(\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)^2\ge4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Từ bất đẳng thức Cô si ta có:
\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)
\(\Rightarrow\)Ta cần chứng minh:
\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.
sai r bạn ơi ko biết còn đòi