Cho α là góc nhọn, chứng minh rằng:
1 - tan α 1 + tan α = cos α - sin α cos α + sin α
cho góc nhọn α tuỳ chọn chứng minh rằng
a) 1+\(\tan^2\) α=1\(\dfrac{1}{\cos^2}\) α
VT `=1+tan^2 α`
`=1+ (sin^2α)/(cos^2α)`
`= (cos^2α+sin^2α)/(cos^2α)`
`= 1/(cos^2α)`
a, \(1+tan^2a=\dfrac{1}{\cos^2a}\)
ĐT \(\Leftrightarrow\cos^2a\left(1+\tan^2a\right)=1\)
\(\Leftrightarrow\cos^2a+\cos^2a.\tan^2a=1\)
\(\Leftrightarrow\cos^2a.\dfrac{\sin^2a}{\cos^2a}+\cos^2a=\sin^2a+\cos^2a=1\) ( ĐT đã có )
=> ĐPCM
Vậy ...
cho góc nhọn α :
chứng minh rằng: \(\frac{1-\tan\text{α}}{1+\tan\text{α}}\)=\(\frac{\cos\text{α}-\sin\text{α}}{\cos\text{α}+\sin\text{α}}\)
\(\frac{1-tana}{1+tana}=\frac{1-\frac{sina}{cosa}}{1+\frac{sina}{cosa}}=\frac{\frac{1}{cosa}\left(cosa-sina\right)}{\frac{1}{cosa}\left(cosa+sina\right)}=\frac{cosa-sina}{cosa+sina}\)
Cho góc nhọn α, biết cos α = \(\dfrac{1}{5}\). Tính sin α, tan α, cot α.
\(sin\alpha^2+cos\alpha^2=1\Rightarrow sin\alpha^2=1-cos\alpha^2=1-\dfrac{1}{25}=\dfrac{24}{25}\Rightarrow sin\alpha=\dfrac{2\sqrt{6}}{5}\)
\(\Rightarrow cot\alpha=\dfrac{cos\alpha}{sin\alpha}=\dfrac{1}{5}:\dfrac{2\sqrt{6}}{5}=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{24}\)
\(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\sin^2\alpha=1-\dfrac{1}{25}=\dfrac{24}{25}\)
hay \(\sin\alpha=\dfrac{2\sqrt{6}}{5}\)
\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)
\(\cot\alpha=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)
Chứng minh giá trị các biểu thức sau không phụ thuộc vào giá trị
của các góc nhọn α.
a) A = cos4α + 2cos2α . sin2α + sin4a
b) B = sin4α + cos2α . sin2α + cos2α
c) C = 2(sin α - cos α )2 - (sin α + cos α )2 + 6sin α . cos α
d) D = (tan α - cot α )2 - (tan α + cot α )2
e) E = 4 cos2 α + (sin α - cos α)2 + (sin α+ cosα)2 + 2(sin2 α -cos2 α)
f) F = \(\dfrac{1}{1+sin\text{α}}\)+\(\dfrac{1}{1-sin\text{α}}\)-2 tan2α
cho góc nhọn α, biết sin α = 0,6 .Không tính số đo góc α, hãy tính cos α, tan α, cot α
\(\sin^2\alpha+\cos^2\alpha=1\\ \Rightarrow\cos^2\alpha=1-0,6^2=0,64\\ \Rightarrow\cos\alpha=0,8=\dfrac{4}{5}\\ \tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{0,6}{0,8}=\dfrac{3}{4}\\ \cot\alpha=\dfrac{1}{\tan\alpha}=\dfrac{1}{0,75}=\dfrac{4}{3}\)
Cho góc nhọn α có cot α = 2/3 . Tính sin α, cos α, tan α
cho góc nhọn α, biết tan α = 2,15 không tính số đo góc α, hãy tính cot α
Vì \(\tan\alpha\cdot\cot\alpha=1\Leftrightarrow\cot\alpha=\dfrac{1}{2,15}=\dfrac{20}{43}\)
Cho góc nhọn α, biết cos α = 3/4. Không tính số đo góc, hãy tính cos α, tan α, cot α
`sin^2 α+cos^2 α =1`
`=> sinα =\sqrt(1-cos^2α)=\sqrt(1-(3/4)^2) = \sqrt7/4`
`=> tanα=(sinα)/(cosα)=(3\sqrt7)/7`
`=> cotα=1/(tanα)=\sqrt7/3`
Đề bài cho cos rồi tính cos làm gì nhỉ =))) Mình tính sin thay vào chỗ đấy nhé.
-------------------------------------------------------------------------------------------------------
\(cos\alpha=\dfrac{3}{4}\Rightarrow cos^2\alpha=\dfrac{9}{16}\)
Mà \(sin^2\alpha+cos^2\alpha=1\)
\(\Rightarrow sin^2\alpha=1-cos^2\alpha=1-\dfrac{9}{16}=\dfrac{7}{16}\)
\(\Rightarrow cos\alpha=\dfrac{\sqrt{7}}{4}\\ \Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{3}{4}}{\dfrac{\sqrt{7}}{4}}=\dfrac{3\sqrt{7}}{7}\\ \Rightarrow cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{\sqrt{7}}{3}\)
Cho góc nhọn α. Biết sin α · cos α = 12 / 25 , tính sin α, cos α, tan α.
Ta có : P = sin3 α + cos3 α = ( sinα + cosα) 3 - 3sin α.cosα(sinα + cosα)
Ta có (sin α + cos α) 2 = sin2α + cos2α + 2sinα.cosα = 1 + 24/25 = 49/25.
Vì sin α + cosα > 0 nên ta chọn sinα + cosα = 7/5.
Thay vào P ta được
Bài 5: Cho góc nhọn α, biết sin α = 2/3. Không tính số đo góc, hãy tính cos α, tan α, cot α
`sin^2 α+cos^2α=1`
`<=> (2/3)^2+cos^2α=1`
`=> cosα= \sqrt5/3`
`=> tan α=(sinα)/(cosα) = (2\sqrt5)/5`
`=> cota = 1/(tanα)=sqrt5/2`