Cho a, b, c là ba số thực không âm và thỏa mãn: a + b + c = 1. Chứng minh rằng 5 a + 4 + 5 b + 4 + 5 c + 4 ≥ 7
Cho ba số thực không âm a,b,c và thỏa mãn a + b + c =1.Chứng minh rằng a + 2b + c ≥ 4(1 - a)(1 - b)(1 - c)
Xét \(VT=a+2b+c=1+b\left(1\right)\)
Áp dụng BĐT AG-GM:
\(4\left(1-a\right)\left(1-c\right)\le\left(1-a+1-c\right)^2=\left(2-a-c\right)^2=\left(1+a+b+c-a-c\right)^2=\left(1+b\right)^2\left(2\right)\)
\(\Rightarrow4\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\left(1-b\right)\left(1+b\right)^2\)
Mà \(\left(1-b\right)\left(1+b\right)^2-\left(1-b\right)=\left(1+b\right)\left(1-b^2-1\right)=-b^2\left(1+b\right)\le0,\forall b\ge0\)
Do đó \(\left(1-b\right)\left(1+b\right)^2\le1+b\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\) ta có ĐPCM
Dấu "=" \(\Leftrightarrow a=c=\dfrac{1}{2};b=0\)
Cho ba số thực không âm a,b,c thỏa mãn : a+b+c=1 .Chứng minh rằng: ab+3ac+5bc\(\le\frac{5}{4}\)
Cho ba số thực không âm a, b, c và thoả mãn a+b+c=1 . Chứng minh rằng :
a + 2b +c ≥ 4(1 - a)(1-b)(1-c)
Thấy : \(a;b;c\ge0;a+b+c=1\) \(\Rightarrow1-a;1-b;1-c\ge0\)
AD BĐT AM - GM ta được : \(4\left(1-a\right)\left(1-c\right)\le\left(2-a-c\right)^2=\left[2-\left(1-b\right)\right]^2=\left(b+1\right)^2\)
\(\Rightarrow4\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\left(1-b\right)\left(b+1\right)^2=\left(1-b^2\right)\left(b+1\right)\le1.\left(b+1\right)=b+1=b+\left(a+b+c\right)=a+2b+c\)
( đpcm )
cho a,b,c là các số thực không âm thỏa mãn : a+b+c=1 .
Chứng minh rằng : ab+bc+ca-3abc \(\ge\)1/4
Các Ctv hoặc các giáo viên helpp ạ
Cho a,b,c là số thực dương không âm thỏa mãn
Cho a,b,c là số thực dương không âm thỏa mãn \(a+b+c=1\) . Chứng minh rằng :
\(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}>10\)
Cho a,b,c là số thực không âm thỏa mãn a+b+c=1 . Chứng minh rằng 2a+b+c \(\ge\)4(a+b)(b+c)(c+a)
Đặt \(x=a+b;y=b+c,z=c+a\)
\(\Rightarrow x+y+z=2\)
Ta cần chứng minh:\(x+z\ge4xyz\)
Ta có:\(4\left(x+z\right)=\left(x+y+z\right)^2\left(x+z\right)\ge4y\left(x+z\right)\left(x+z\right)\)
\(=4y\left(x+z\right)^2\ge4y.4xz=16xyz\)
\(\Rightarrow\)\(x+z\ge4xyz\)
Hoàn tất chứng minh.Dấu "=" xảy ra khi \(x=z=\frac{1}{2};y=1\) thế vào tìm a,b,c
Cho a,b,c là ba số thực ko âm thỏa mãn : a+b+c =3. Chứng minh rằng : (a-1)3+(b-1)3+(c-1)3> -3/4
Cho a ,b,c là các số thực không âm thỏa mãn a2+b2+c2=1.chứng minh rằng: c/1+bc + b/1+ca + a/1+bc >= 1
Cho a,b,c là số thực dương không âm thỏa mãn \(a+b+c=1\). Chứng minh rằng :
\(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}>10\)