Chứng minh đẳng thức : |
( x^2 + y^2 )2 – 4x^2 y^2 = ( x + y ) ^2 ( x – y )^2 |
Chứng minh đẳng thức:
(x^2+y^2)^2-4x^2y^2=(x+y)^2(x-y)^2
Làm hộ mình với. Thanks
Ta có:
\(\left(x^2+y^2\right)^2-4x^2y^2-\left(x+y\right)^2\left(x-y\right)^2.\)
\(=x^4+2.x^2.y^2+y^4-4x^2y^2-\left[\left(x+y\right)\left(x-y\right)\right]^2\)
\(=x^4+2.x^2.y^2+y^4-4x^2y^2-\left[x^2-y^2\right]^2\)
\(=x^4+2x^2y^2+y^4-4x^2y^2-\left(x^4-2x^2y^2+y^4\right)\)
\(=x^4+2x^2y^2+y^4-4x^2y^2-x^4+2x^2y^2-y^4\)
\(=0\)
Vậy \(\left(x^2+y^2\right)^2-4x^2y^2=\left(x+y\right)^2\left(x-y\right)^2.\)
chứng minh đẳng thức
\(\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{x^4+4x^2y^2+y^4-4}{x^2+y+xy+x}:\frac{1}{2x^2+y+2}=\frac{x+1}{2y-x}\)
Chứng minh các đẳng thức sau
a) (x+y)2 - y2 = x*(x+2y)
b) (x2+y2) - 4x2y2 = (x+y)2 * (x-y)2
\(a,\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)\)
\(b,\left(x^2+y^2\right)-4x^2y^2=\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)=\left(x-y\right)^2\left(x+y\right)^2\)
Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html
Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html
1.Tính:
\(x:\frac{x-1}{2}-\frac{\left(x-1\right)\left(x^2+4x+1\right)}{2x^2+2x}.\frac{-4x}{\left(x-1\right)^2}-\frac{4x^2}{x^2-1}\)
2.Chứng minh đẳng thức sau( giả sử đẳng thức có nghĩa):
\(\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}+\frac{x-y}{\left(z-x\right)\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
Các bạn giúp mình với!
chứng minh đẳng thức (x+y)(x+y+z)-2(x+1)(y+1)+2=x^2+y^2
Sửa đề: (x+y)(x+y+2)-2(x+1)(y+1)+2-x^2-y^2
=(x+y)^2+2(x+y)-x^2-y^2-2(xy+x+y+1)+2
=2xy+2(x+y)-2xy-2x-2y-2+2
=2(x+y)-2(x+y)-2+2
=0
=>Đẳng thức được chứng minh
bài 1:tính GTNN của các biểu thức sau:
a,A=x^2-4x+6
b,B=y^2-y+1
c,C=x^2-4x+y^2-y+5
bài 2: tính GTLN của các biểu thức sau
a,A=-x^2+4x+2
b,B=x-x^2+2
bài 3:chứng tỏ
a,x^2-6x+10>0 với mọi x
b,4y-y^2-5 với mọi y
bài 4:cho biết x+y=15 và xy=-100. Tính giá trị của biểu thức B=x^2+y^2
bài 5:chứng minh đẳng thức (x+y)^2-(x-y)^2=4xy
Bài 1 :
a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi y = 1/2
Vậy GTNN B là 3/4 khi y = 1/2
c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)
Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2
Bài 3 :
a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )
b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )
Bài 4 :
\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)
Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)
Bài 5 :
\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)
\(=2y.2x=4xy=VP\)( đpcm )
Trả lời:
Bài 1:
a, \(A=x^2-4x+6=x^2-2.x.2+4+2=\left(x-2\right)^2+2\)\(\ge2\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTNN của A = 2 khi x = 2
b, \(B=y^2-y+1=\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)\(\ge\frac{3}{4}\forall y\)
Dấu "=" xảy ra khi \(y-\frac{1}{2}=0\Leftrightarrow y=\frac{1}{2}\)
Vậy GTNN của B = 3/4 khi x = 1/2
c, \(C=x^2-4x+y^2-y+5=\left(x^2-4x\right)+\left(y^2-y\right)+4+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x^2-4x+4\right)+\left(y^2-y+\frac{1}{4}\right)+\frac{3}{4}=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)\(\ge\frac{3}{4}\forall x;y\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2 và y - 1/2 = 0 <=> y = 1/2
Vậy GTNN của C = 3/4 khi x = 2; y = 1/2
Bài 2:
a, \(A=-x^2+4x+2=-\left(x^2-4x-2\right)=-\left(x^2-2.x.2+4-6\right)=-\left[\left(x-2\right)^2-6\right]\)
\(=-\left(x-2\right)^2+6\le6\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của A = 6 khi x = 2
b, \(B=x-x^2+2=-\left(x^2-x-2\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{9}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{9}{4}\le-\frac{9}{4}\forall x\)
Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2
Vậy GTLN của B = - 9/4 khi x = 1/2
Chứng minh đẳng thức:
1) (xy+z)2 -x2y2 = z(2xy+z)
2) (x2+y2)2 -4x2y2 = (x+y)2 (x-y)2
1, \(\left(xy+z\right)^2-x^2y^2=z\left(2xy+z\right)\)
Biến đổi VT :\(\left(xy+z\right)^2-x^2y^2\)
\(=x^2y^2+2xyz+z^2-x^2y^2\)
\(=2xyz+z^2\)
\(=z\left(2xy+z\right)\) = VP
Vậy \(\left(xy+z\right)^2-x^2y^2=z\left(2xy+z\right)\)
2, \(\left(x^2+y^2\right)^2-4x^2y^2=\left(x+y\right)^2\left(x-y\right)^2\)
Biến đổi VT: \(\left(x^2+y^2\right)^2-4x^2y^2\)
\(=x^4+2x^2y^2+y^4-4x^2y^2\)
\(=x^4-2x^2y^2+y^4\)
Biến đổi VP: \(\left(x+y\right)^2\left(x-y\right)^2\)
\(=\left(x^2+2xy+y^2\right)\left(x^2-2xy+y^2\right)\)
\(=x^4-2x^3y+x^2y^2+2x^3y-4x^2y^2+2xy^3+x^2y^2-2xy^3+y^4\)\(=x^4-2x^2y^2+y^4\)
Ta có VT = VP
Vậy \(\left(x^2+y^2\right)^2-4x^2y^2=\left(x+y\right)^2\left(x-y\right)^2\)
1 ) \(VT=\left(xy+z\right)^2-x^2y^2\)
\(=x^2y^2+2xyz+z^2-x^2y^2\)
\(=2xyz+z^2\)
\(=z\left(2xy+z\right)=VP\left(đpcm\right)\)
2 ) \(VT=\left(x^2+y^2\right)^2-4x^2y^2\)
\(=x^4+2x^2y^2+y^4-4x^2y^2\)
\(=x^4+y^4-2x^2y^2\)
\(=\left(x^2-y^2\right)^2\)
\(=\left[\left(x-y\right)\left(x+y\right)\right]^2\)
\(=\left(x-y\right)^2\left(x+y\right)^2=VP\left(đpcm\right)\)
cho x^2+y^2=2.Chứng minh đẳng thức 2(x+1)(y+1)=(x+y)(x+y+2)
Theo đề ra :\(x^2+y^2=2\Leftrightarrow x^2+y^2+2xy=2+2xy\Leftrightarrow\left(x+y\right)^2=2+2xy.\)(1)
Khi đó \(\left(x+y\right)\left(x+y+2\right)=\left(x+y\right)^2+2\left(x+y\right)\)
\(=2+2xy+2\left(x+y\right)\)( Thế (1) vô)
\(=2\left(x+y+xy+1\right)\)
\(=2\left[y\left(x+1\right)+\left(x+1\right)\right]\)
\(=2\left(x+1\right)\left(y+1\right)\)
chứng minh đẳng thức (x-y)^3+4y(2x^2+y^2)=(x+y)^3+2y(x^2+y^2)
Ta có: \(\left(x-y\right)^3+4y\left(2x^2+y^2\right)\)
\(=x^3-3x^2y+3xy^2-y^3+8x^2y+4y^3\)
\(=x^3+5x^2y+3xy^2+3y^3\)
\(=x^3+3x^2y+3xy^2+y^3+2x^2y+2y^3\)
\(=\left(x+y\right)^3+2y\left(x^2+y^2\right)\)