Cho tam giác ABC vuông tại A có đường cao AH (H thuộc BC). Biết A C B ^ = 60 0 , CH = a. Tính độ dài AB và AC theo a
A. A B = 2 3 a A C = 2 a
B. A B = 3 a A C = 1 2 a
C. A B = a A C = 3 a
D. A B = 3 a A C = a
Cho tam giác ABC vuông tại A,đường cao AH (H thuộc BC) Biết AB=6cm,AC=8cm a c/m tam giác ABC đồng dạng tam giác HBA b Tính AH,BC
a) Xét ΔABC và ΔHBA có
chung góc B
BAC = AHC (=90°)
=> ΔABC ∽ ΔHBA(gg)
ai biết giải giúp minh với:
Câu 1:Cho tam giác ABC có 3 góc nhọn,các đường cao AD,BE,CK cắt nhau tại H.chứng minh
a,tứ giác HECD nội tiếp
b,Tia DA là tia phân giác góc EDK
Cây 2:cho tam giác ABC vuông tai A,biết ab=6cm,ac=8cm
A.tính bc
B,kẻ đường cao AH,tính Ah
Câu 3:Cho tam giác abc vuông tại A,BIẾT AC=4cm,Bc=5cm.
A,Tính cạnh AB
B,kẻ đường cao AH,TÍNH AH
Câu 4:Cho tam giác vuông ABC,vuông tại A(H thuộc BC).bIẾT AB=12CM,AC=5CM.tính BH,CH
Câu 5:cho tam giác ABC vuông tại A,đường cao AH(H THUỘC BC).biết BC=18cm,BH=6cm.Tính độ dài các cạnh AB,AC
Cau 6:Cho tam giác ABC,vuông tại A,biết AB=4cm,đường cao AH=2CM,tính các góc và các cạnh còn lại cua tam giac.?
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
câu 1:Cho tam giác ABC,vuông tại A,đường cáo AH(H thuộc BC).Biết AB=12CM,Ac=5cm.tính BH,CH
Câu 2:cho tam giác ABC vuông tại A,đường cáo AH(H thuộc BC).Biết AB=18cm,BH=6cm.tính đô dài các cạnh AB,AC
Câu 3:cho tam giac abc vuông tại a,biết ab-3cm,ac=4cm,
a.tinh bc
b:kẻ đường cao ah,tính bh
Câu 4:cho tam giác ABC Vuông tại A,biết ab=4cm,đường cao ah=2cm.Tính các góc và các cạnh còn lại của tam giác
Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o
Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2
Cho tam giác ABC vuông tại A có đường cao AH(H thuộc BC).Biết CH=2cm,BC=6cm.Tính BC,AH và BH
\(BH=BC-CH=4\left(cm\right)\)
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=24\\AC^2=CH\cdot BC=12\\AH^2=BH\cdot CH=8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\\AH=2\sqrt{2}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A có đường cao AH(H thuộc cạnh BC) biết AB=a , BC=2a.Tính theo a độ dài AC và AH
Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) (đl pytago)
\(\Leftrightarrow4a^2=a^2+AC^2\\\Rightarrow AC=4a^2-a^2=3a^2 \)
Vậy \(AC=\sqrt{3}a\)
Tam giác ABC vuông tại A có AH \(\perp\) AC tại H
Ta có:
\(BC.AH=AB.AC\) (hệ thức lượng)
\(\Leftrightarrow2a.AH=a.\sqrt{3}a\\ \Rightarrow AH=\dfrac{\sqrt{3}a^2}{2a}=\dfrac{\sqrt{3}a}{2}\)
Vậy \(AH=\dfrac{\sqrt{3}a}{2}\)
Cho tam giác ABC vuông tại A có AB =21 cm ; AC =28cm . Gọi AD là phân giác của góc BAC ,AH là đường cao của tam giác ( H thuộc BC,D thuộc BC ) a,Tính BC,BD,DC? b,Tính đường cao AH? c,cmr: tam giác AHB đồng dạng tam giác CHA
a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)
BD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=35/7=5
=>DB=15cm; DC=20cm
b: AH=21*28/35=16,8cm
c: Xet ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
cho tam giác ABC vuông tại A,đường cao AH (H thuộc BC) Biết BC =5 cm,AB=3cm.Tính độ dài đường cao AH.
Áp dụng PTG ta có: \(AB^2+AC^2=BC^2\Rightarrow AC=4\left(cm\right)\)
Áp dụng HTL ta có: \(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\\ \Rightarrow AH=2,4\left(cm\right)\)
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC), AH=6cm; BC=10cm. a) Tính diện tích tam giác ABC b) Tam giác ABH đồng dạng với tam giác CBA c) AB.AC=BC.AH
a) \(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.6.10=30\left(cm^2\right)\)
b) Xét \(\Delta ABH\) và \(\Delta CBA:\) Ta có: \(\left\{{}\begin{matrix}\angle ABCchung\\\angle AHB=\angle CAB=90\end{matrix}\right.\)
\(\Rightarrow\Delta ABH\sim\Delta CBA\left(g-g\right)\)
c) \(\Delta ABH\sim\Delta CBA\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\Rightarrow AH.BC=AB.AC\)
cho tam giác ABC vuông tại A có đường cao AH ( H thuộc cạnh BC) Biết AB=a, BC=2a . TÍnh theo A độ dài AC và AH
AC=căn (2a)^2-a^2=a*căn 3
AH=a*a*căn 3/2a=a*căn 3/2
cho tam giác ABC vuông tại A đường cao AH (H thuộc BC) biết AB=4, AH=2. tính BC
Áp dụng hệ thức lượng vào tam giác ABC vuông tại A đường cao AH
=>\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
<=> \(\dfrac{1}{2^2}=\dfrac{1}{4^2}+\dfrac{1}{AC^2}\)Giải pt ta dc :
=> AC =\(\dfrac{4\sqrt{3}}{3}\)
Áp dụng định lý Pitago vào tam giác ABC vuông tại A
=> \(BC^2=AB^2+AC^2\)
Thay AB và AC vào rồi tính thì ta sẽ dc:
BC=\(\dfrac{8\sqrt{3}}{3}\)
Vậy BC = \(\dfrac{8\sqrt{3}}{3}\)