Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
erosennin
Xem chi tiết
huy
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 15:46

Do \(\left( { - 2\pi ; - \pi } \right) = \left( { - 2\pi ;\pi  - 2\pi } \right)\) nên hàm số \(y = \cos x\) nghịch biến trên khoảng \(\left( { - 2\pi ; - \pi } \right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 4 2017 lúc 3:20

Đáp án A

Hàm số chẵn là: y = cos x

nguyen thi be
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 6 2021 lúc 20:53

a.

\(y'=\dfrac{2-x}{2x^2\sqrt{x-1}}=0\Rightarrow x=2\)

\(y\left(1\right)=0\) ; \(y\left(2\right)=\dfrac{1}{2}\) ; \(y\left(5\right)=\dfrac{2}{5}\)

\(\Rightarrow y_{min}=y\left(1\right)=0\)

\(y_{max}=y\left(2\right)=\dfrac{1}{2}\)

b.

\(y'=\dfrac{1-3x}{\sqrt{\left(x^2+1\right)^3}}< 0\) ; \(\forall x\in\left[1;3\right]\Rightarrow\) hàm nghịch biến trên [1;3]

\(\Rightarrow y_{max}=y\left(1\right)=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)

\(y_{min}=y\left(3\right)=\dfrac{6}{\sqrt{10}}=\dfrac{3\sqrt{10}}{5}\)

Nguyễn Việt Lâm
6 tháng 6 2021 lúc 20:58

c.

\(y=1-cos^2x-cosx+1=-cos^2x-cosx+2\)

Đặt \(cosx=t\Rightarrow t\in\left[-1;1\right]\)

\(y=f\left(t\right)=-t^2-t+2\)

\(f'\left(t\right)=-2t-1=0\Rightarrow t=-\dfrac{1}{2}\)

\(f\left(-1\right)=2\) ; \(f\left(1\right)=0\) ; \(f\left(-\dfrac{1}{2}\right)=\dfrac{9}{4}\)

\(\Rightarrow y_{min}=0\) ; \(y_{max}=\dfrac{9}{4}\)

d.

Đặt \(sinx=t\Rightarrow t\in\left[-1;1\right]\)

\(y=f\left(t\right)=t^3-3t^2+2\Rightarrow f'\left(t\right)=3t^2-6t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\notin\left[-1;1\right]\end{matrix}\right.\)

\(f\left(-1\right)=-2\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=2\)

\(\Rightarrow y_{min}=-2\) ; \(y_{max}=2\)

Kiều Hạ Vy
Xem chi tiết
Phạm Trần Phát
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 22:29

1: \(y=x+\dfrac{4}{\left(x-2\right)^2}\)

\(\Leftrightarrow y'=1+\left(\dfrac{4}{\left(x-2\right)^2}\right)'\)

=>\(y'=1+\dfrac{4'\left(x-2\right)^2-4\left[\left(x-2\right)^2\right]'}{\left(x-2\right)^4}\)

=>\(y'=1+\dfrac{-4\cdot2\cdot\left(x-2\right)'\left(x-2\right)}{\left(x-2\right)^4}\)

=>\(y'=1-\dfrac{8}{\left(x-2\right)^3}\)

Đặt y'=0

=>\(\dfrac{8}{\left(x-2\right)^3}=1\)

=>\(\left(x-2\right)^3=8\)

=>x-2=2

=>x=4

Đặt \(f\left(x\right)=x+\dfrac{4}{\left(x-2\right)^2}\)

\(f\left(4\right)=4+\dfrac{4}{\left(4-2\right)^2}=4+1=5\)

\(f\left(0\right)=0+\dfrac{4}{\left(0-2\right)^2}=0+\dfrac{4}{4}=1\)

\(f\left(5\right)=5+\dfrac{4}{\left(5-2\right)^2}=5+\dfrac{4}{9}=\dfrac{49}{9}\)

Vì f(0)<f(4)<f(5)

nên \(f\left(x\right)_{max\left[0;5\right]\backslash\left\{2\right\}}=f\left(5\right)=\dfrac{49}{9}\) và \(f\left(x\right)_{min\left[0;5\right]\backslash\left\{2\right\}}=1\)

2: \(y=cos^22x-sinx\cdot cosx+4\)

\(=1-sin^22x-\dfrac{1}{2}\cdot sin2x+4\)

\(=-sin^22x-\dfrac{1}{2}\cdot sin2x+5\)

\(=-\left(sin^22x+\dfrac{1}{2}\cdot sin2x-5\right)\)

\(=-\left(sin^22x+2\cdot sin2x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{81}{16}\right)\)

\(=-\left(sin2x+\dfrac{1}{4}\right)^2+\dfrac{81}{16}\)

\(-1< =sin2x< =1\)

=>\(-\dfrac{3}{4}< =sin2x+\dfrac{1}{4}< =\dfrac{5}{4}\)

=>\(0< =\left(sin2x+\dfrac{1}{4}\right)^2< =\dfrac{25}{16}\)

=>\(0>=-\left(sin2x+\dfrac{1}{4}\right)^2>=-\dfrac{25}{16}\)

=>\(\dfrac{81}{16}>=-sin\left(2x+\dfrac{1}{4}\right)^2+\dfrac{81}{16}>=-\dfrac{25}{16}+\dfrac{81}{16}=\dfrac{7}{2}\)

=>\(\dfrac{81}{16}>=y>=\dfrac{7}{2}\) 

\(y_{min}=\dfrac{7}{2}\) khi \(sin2x+\dfrac{1}{4}=\dfrac{5}{4}\)

=>\(sin2x=1\)

=>\(2x=\dfrac{\Omega}{2}+k2\Omega\)

=>\(x=\dfrac{\Omega}{4}+k\Omega\)

\(y_{max}=\dfrac{81}{16}\) khi sin 2x=-1

=>\(2x=-\dfrac{\Omega}{2}+k2\Omega\)

=>\(x=-\dfrac{\Omega}{4}+k\Omega\)

Phạm Trần Phát
11 tháng 12 2023 lúc 20:57

loading...

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 4 2020 lúc 17:25

\(cos^2t=cos^2\left(2\pi-x-y-z\right)=cos^2\left(x+y+z\right)\)

\(VT=cos^2x+cos^2y-cos^2z-cos^2\left(x+y+z\right)\)

\(=\frac{1}{2}+\frac{1}{2}cos2x+\frac{1}{2}+\frac{1}{2}cos2y-\frac{1}{2}-\frac{1}{2}cos2z-\frac{1}{2}-\frac{1}{2}cos\left(2x+2y+2z\right)\)

\(=\frac{1}{2}\left(cos2x-cos2z\right)+\frac{1}{2}\left(cos2y-cos\left(2x+2y+2z\right)\right)\)

\(=-sin\left(x+z\right)sin\left(x-z\right)-sin\left(x+2y+z\right)sin\left(-x-z\right)\)

\(=sin\left(x+z\right)\left[sin\left(x+2y+z\right)-sin\left(x-z\right)\right]\)

\(=2sin\left(x+z\right).sin\left(y+z\right).cos\left(x+y\right)\)

Không giống :D

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 16:05

Hàm số nghịch biến trên khoảng \(\left( {\pi ;2\pi } \right)\) là:\(y = \cos x\)

Chọn B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 2 2019 lúc 3:40