Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ha My
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 2 2020 lúc 10:13

b/ \(\Leftrightarrow-4< \frac{-2x^2-mx+4}{x^2-x+1}< 6\)

Do \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x nên BPT tương đương:

\(-4\left(x^2-x+1\right)< -2x^2-mx+4< 6\left(x^2-x+1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-\left(m+4\right)x+8>0\\8x^2+\left(m-6\right)x+2>0\end{matrix}\right.\)

Cả 2 BPT đều đúng với mọi x khi và chỉ khi:

\(\left\{{}\begin{matrix}\Delta_1=\left(m+4\right)^2-64< 0\\\Delta_2=\left(m-6\right)^2-64< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+8m-48< 0\\m^2-12m-28< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-12< m< 4\\-2< m< 14\end{matrix}\right.\) \(\Rightarrow-2< m< 4\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
18 tháng 2 2020 lúc 10:19

c/ Do \(2x^2-3x+2=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}>0\) với mọi x, BPT tương đương:

\(-\left(2x^2-3x+2\right)\le x^2+5x+m< 7\left(2x^2-3x+2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+5x+m\ge-2x^2+3x-2\\14x^2-21x+14>x^2+5x+m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+2x+m+2\ge0\\13x^2-26x-m+14>0\end{matrix}\right.\)

Để 2 BPT đều đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}4-12\left(m+2\right)\le0\\13^2-13\left(-m+14\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-20\le12m\\-13+13m< 0\end{matrix}\right.\) \(\Rightarrow-\frac{5}{3}\le m< 1\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
18 tháng 2 2020 lúc 10:07

a/ Do \(2x^2-2x+3=2\left(x-\frac{1}{2}\right)^2+\frac{5}{2}>0\) với mọi x nên BPT tương đương:

\(x^2+mx-1< 2x^2-2x+3\)

\(\Leftrightarrow x^2-\left(m+2\right)x+4>0\)

Để BPT đúng với mọi x

\(\Leftrightarrow\Delta=\left(m+2\right)^2-16< 0\)

\(\Leftrightarrow\left(m+2\right)^2< 16\Leftrightarrow-6< m< 2\)

Khách vãng lai đã xóa
Nguyễn Thu Trang
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Lê Huy Hoàng
Xem chi tiết
Phạm Minh Quang
9 tháng 2 2020 lúc 17:29

A = \(\frac{3x}{2}+\frac{2}{x-1}=3.\frac{x-1}{2}+\frac{2}{x-1}+\frac{3}{2}\)\(\ge2\sqrt{3}+\frac{3}{2}\)

\(\Rightarrow\)min A = \(2\sqrt{3}+\frac{3}{2}\Leftrightarrow x=\frac{2}{\sqrt{3}}+1\)(thỏa mãn)

B = \(x+\frac{3}{3x-1}=\frac{1}{3}\left(3x-1+\frac{9}{3x-1}+1\right)\)\(\ge\frac{1}{3}\left(2\sqrt{9}+1\right)=\frac{7}{3}\)

\(\Rightarrow\)min B = \(\frac{7}{3}\Leftrightarrow x=\frac{4}{3}\)

Khách vãng lai đã xóa
Phạm Minh Quang
9 tháng 2 2020 lúc 17:12

\(A\) \(=\) \(3x^2\left(8-x^2\right)\le3\frac{\left(x^2+8-x^2\right)^2}{4}=48\)

\(\Rightarrow\) maxA = 48 \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)(thỏa mãn)

\(B=\) \(4x\left(8-5x\right)\)\(=\frac{4}{5}.5x\left(8-5x\right)\le\frac{4}{5}.\frac{\left(5x+8-5x\right)^2}{4}=\frac{64}{5}\)

\(\Rightarrow\)max B = \(\frac{64}{5}\Leftrightarrow x=\frac{4}{5}\)(thỏa mãn)

Khách vãng lai đã xóa
Phạm Minh Quang
9 tháng 2 2020 lúc 17:21

C = \(4\left(x-1\right)\left(8-5x\right)=\frac{4}{5}.\left(5x-5\right)\left(8-5x\right)\)\(\le\frac{4}{5}.\frac{\left(5x-5+8-5x\right)^2}{4}=\frac{9}{5}\)

\(\Rightarrow\)max C = \(\frac{9}{5}\)\(\Leftrightarrow x=\frac{13}{10}\)(thỏa mãn)

D = \(x\left(3-\sqrt{3}\right)\)(quá dễ rồi)

Khách vãng lai đã xóa
Thiên Thiên Hướng Thượng
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 5 2020 lúc 0:06

a/ Do \(x^2+1>0;\forall x\) nên BPT tương đương:

\(3-2mx\le0\Leftrightarrow2mx\ge3\)

- Với \(m=0\Rightarrow0\ge3\) (vô lý) \(\Rightarrow\) BPT vô nghiệm

- Với \(m< 0\Rightarrow x\le\frac{3}{2m}\)

- Với \(m>0\Rightarrow x\ge\frac{3}{2m}\)

b/ Do \(x^2+4>0;\forall x\) nên BPT tương đương:

\(x^2-mx+3-\left(x^2+4\right)\ge0\)

\(\Leftrightarrow-mx-1\ge0\Leftrightarrow mx\le-1\)

- Với \(m=0\) BPT vô nghiệm

- Với \(m>0\Rightarrow x\le-\frac{1}{m}\)

- Với \(m< 0\Rightarrow x\ge-\frac{1}{m}\)

Ruby Sweety
Xem chi tiết
Tú Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 2 2020 lúc 20:22

a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{1}{4}\left(x+3+5-x\right)^2=16\)

Dấu "=" xảy ra khi \(x+3=5-x\Leftrightarrow x=1\)

b/ \(y=x\left(6-x\right)\le\frac{1}{4}\left(x+6-x\right)^2=9\)

\("="\Leftrightarrow x=3\)

c/ \(y=\frac{1}{2}\left(2x+6\right)\left(5-2x\right)\le\frac{1}{8}\left(2x+6+5-2x\right)^2=\frac{121}{8}\)

\("="\Leftrightarrow x=-\frac{1}{4}\)

d/ \(y=\frac{1}{2}\left(2x+5\right)\left(10-2x\right)\le\frac{1}{8}\left(2x+5+10-2x\right)^2=\frac{225}{8}\)

\("="\Leftrightarrow x=\frac{5}{4}\)

e/ \(y=3\left(2x+1\right)\left(5-2x\right)\le\frac{3}{4}\left(2x+1+5-2x\right)^2=27\)

\("="\Leftrightarrow x=1\)

f/ \(\frac{x}{x^2+2}\le\frac{x}{2\sqrt{x^2.2}}=\frac{1}{2\sqrt{2}}\)

\("="\Leftrightarrow x=\sqrt{2}\)

g/ \(y=\frac{x^2}{\left(x^2+\frac{3}{2}+\frac{3}{2}\right)^3}\le\frac{x^2}{\left(3\sqrt[3]{\frac{9}{4}x^2}\right)^3}=\frac{4}{243}\)

\("="\Leftrightarrow x^2=\frac{3}{2}\Leftrightarrow x=\pm\sqrt{\frac{3}{2}}\)

Khách vãng lai đã xóa
Trần Phúc Khang
Xem chi tiết
Kim Han Bin
16 tháng 3 2020 lúc 14:43

Bạn hỏi hay trả lời vậy?

Khách vãng lai đã xóa
Linh Châu
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 7 2020 lúc 22:26

\(A=\frac{3}{4}.4.x^2\left(8-x^2\right)\le\frac{3}{4}\left(x^2+8-x^2\right)^2=48\)

\(A_{max}=48\) khi \(x^2=8-x^2\Rightarrow x=\pm2\)

\(B=\frac{1}{2}\left(2x-1\right)\left(6-2x\right)\le\frac{1}{8}\left(2x-1+6-2x\right)^2=\frac{25}{8}\)

\(B_{max}=\frac{25}{8}\) khi \(2x-1=6-2x\Rightarrow x=\frac{7}{4}\)

\(C=\frac{1}{\sqrt{3}}.\sqrt{3}x\left(3-\sqrt{3}x\right)\le\frac{1}{4\sqrt{3}}\left(\sqrt{3}x+3-\sqrt{3}x\right)^2=\frac{3\sqrt{3}}{4}\)

\(C_{max}=\frac{3\sqrt{3}}{4}\) khi \(\sqrt{3}x=3-\sqrt{3}x=\frac{\sqrt{3}}{2}\)

\(D=\frac{1}{20}.20x\left(32-20x\right)\le\frac{1}{80}\left(20x+32-20x\right)^2=\frac{64}{5}\)

\(D_{max}=\frac{64}{5}\) khi \(20x=32-20x\Rightarrow x=\frac{4}{5}\)

\(E=\frac{4}{5}\left(5x-5\right)\left(8-5x\right)\le\frac{1}{5}\left(5x-5+8-5x\right)=\frac{9}{5}\)

\(E_{max}=\frac{9}{5}\) khi \(5x-5=8-5x\Leftrightarrow x=\frac{13}{10}\)

Tường Hồ Bá Mạnh
Xem chi tiết