Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Linh
Xem chi tiết
Hoàng Nguyệt
11 tháng 8 2021 lúc 20:51

Ta có: \(7.5^{2n}+12.6^n\)

\(7.5^{2n}+\left(19-7\right).6^n\)

\(7.5^{2n}+19.6^n-7.6^n\)

\(7\left(5^{2n}-6^n\right)+19.6^n\)

\(7\left(25^n-6^n\right)+19.6^n\)

Có: \(19+6^n⋮19\)

\(7\left(25^n-6^n\right)⋮19\)

Vậy...................(đpcm)

Coin Hunter
Xem chi tiết

Đặt \(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)

Do \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)

\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)

\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)

Do \(19.6^n⋮19\Rightarrow A⋮19\)

A = 7.52n + 12.6n

A = 7.(52)n + 12.6n

A = 7.25n + 12.6n

25  \(\equiv\) 6 (mod 19)

25n \(\equiv\) 6n (mod 19)

7    \(\equiv\) - 12 (mod 19)

⇒ 7.25n \(\equiv\) -12.6n (mod 19)

⇒ 7.25n -( -12.6n) ⋮ 19

⇒ 7.25n + 12.6n   ⋮ 19

 

 

Mai Trung Hải Phong
8 tháng 1 lúc 19:13

Ta có:

\(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)

Vì \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)

\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)

\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)

\(\Rightarrow A\equiv0\left(mod19\right)\)

Vậy ....

phạm văn huấn
Xem chi tiết
phạm văn huấn
25 tháng 2 2016 lúc 21:41

ai giúp mk vs

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 11 2018 lúc 4:57

* Ta có u 1 = 9 1 − 1 = 8  chia hết cho 8 (đúng với n = 1).

* Giả sử u k = 9 k − 1 chia hết cho 8.

Ta cần chứng minh u k + 1 = 9 k + 1 − 1  chia hết cho 8.

Thật vậy, ta có u k + 1 = 9 k + 1 − 1 = 9.9 k − 1 = 9 9 k − 1 + 8 = 9 u k + 8 .

Vì 9 u k và 8 đều chia hết cho 8, nên u k + 1 cũng chia hết cho 8.

Vậy với mọi số nguyên dương n thì u n chia hết cho 8.

long
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 12 2023 lúc 14:06

Bạn ghi lại biểu thức đi bạn

Nguyễn Lê Phước Thịnh
1 tháng 12 2023 lúc 14:12

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=\left(3^n\cdot9+3^n\right)-\left(4\cdot2^n+2^n\right)\)

\(=10\cdot3^n-5\cdot2^n\)

\(=10\cdot3^n-10\cdot2^{n-1}=10\left(3^n-2^{n-1}\right)⋮10\)

Jack Yasuo
Xem chi tiết
Đồng Lê Quân
25 tháng 5 2020 lúc 21:00

kmmdjkxmcmkjkdkddfffdfdg

Khách vãng lai đã xóa
Nguyễn Thái Sơn
25 tháng 5 2020 lúc 21:36

Mình nghĩ đề là 33n+1

33n+2+5.33n+1 

33n.32+5.33n.2

33n.9+33n.10

=>33n.19\(⋮\)19

Khách vãng lai đã xóa
Hiền Nguyễn
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 11 2021 lúc 12:05

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)

\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)

Khaanh Chii
Xem chi tiết
Toru
15 tháng 12 2023 lúc 18:38

Có: $6^n\cdot5=(2\cdot3)^n\cdot5=2^n\cdot3^n\cdot5$

$=(2\cdot5)\cdot2^{n-1}\cdot3^n=10\cdot2^{n-1}\cdot3^n$

Với $n$ nguyên dương $\Rightarrow n-1\ge 0$

Khi đó: $10\cdot2^{n-1}\cdot3^n\vdots10$

hay $6^n\cdot5\vdots10$ với $n$ nguyên dương.

chì xanh
Xem chi tiết