tính :1*2-1/2!-3*2-1/3!+3*4-1/4!+...+99*100-1/100!
Tính tổng
1/ 1+(-2)+3+(-4)+....+19+(-20)
2/1-2+3-4+....+99-100
3/2-4+6-8+...-48+50
4/-1+3-5+7-...+97-99
5/1+2-3-4+....+97+98-99-100
1/1+(-2)+3+(-4)+...+19+(-20)
=[1+(-2)]+[3+(-4)]+...+[19+(-20)]
=-1+(-1)+...+(-1) (cos10 số -1)
=-1.10=-10
Tính M/N biết M = 99/1 + 98/2 + 97/3 + ... + 2/98 + 1/99 và N = 1/2 + 1/3 + 1/4 +...+1/99+1/100
\(M=\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)
cộng vào mỗi phân số trong 98 phân số sau,trừ phân số cuối đi 98 , ta được :
\(M=1+\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{2}{98}+1\right)+\left(\frac{1}{99}+1\right)\)
\(M=\frac{100}{100}+\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)
chuyển phân số \(\frac{100}{100}\)ra sau , ta được :
\(M=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}+\frac{100}{100}\)
\(M=100.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)\)
\(\Rightarrow\frac{M}{N}=\frac{100.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}=100\)
tính nhanh
M =1/1×2+1/2×3+1/3×4+............+1/99×100
M =1/1×2+1/2×3+1/3×4+............+1/99×100
=>M = 1/2 + 1/6 +1/12 +.....+1/9900
Ta có 1/2 = 1- 1/2
1/6 = 1/2 - 1/3
1/12 = 1/3 - 1/4
....
1/9900 = 1/99 - 1/100
=> M = 1 - 1/2 +1/2 -1/3 +1/3 -1/4 + ..... + 1/98 - 1/99 +1/99 - 1/100
=> M = 1 - (1/2 +1/2 - 1/3 +1/3 -1/4+....+1/98 -1/99 +1/99) - 1/100
=> M = 1 - 0 - 1/100
=> M = 1-1/100
=> M = 99/100
Vậy M =99/100
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
thực hiện phép tính sau :
1/ 2 *3 + 1/3*4 + 1/4*5 + 1/5*6 + ....+ 1/ 99 * 100
1/2*3+1/3*4+1/4*5 + 1/5*6 + .... + 1/99 * 100
= 1/2 -1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 +..... + 1/99 - 1/100
= 1/2 - 1/100
= 49/100 nha bạn !
1/2x3+1/3x4+1/4x5+1/5x6+....+1/99x100
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+....+1/99-1/100
=1/2-1/100=49/100
1/2*3+1/3*4+1/4*5 + 1/5*6 + .... + 1/99 * 100
= 1/2 -1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 +..... + 1/99 - 1/100
= 1/2 - 1/100
= 49/100
Đúng rồi nha bạn !
tính I=1^2+4^2+7^2+............+100^2
tính P=1.3^3+3.5^3+5.7^3+..........+49.51^3
Tính Q=1. 99^2+2.98^2+3.97^2+......+49.51^2
Tính tổng : S = 1 . 2+ 2 . 3 + 3 . 4 + ....... + 99 . 100
\(S=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3S=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(\Rightarrow3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(\Rightarrow3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(\Rightarrow3S=99.100.101=999900\Rightarrow S=999900\div3=333300\)
Vậy : \(S=333300\)
\(S=1.2+2.3+3.4+...+99.100\)
\(3S=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)
\(3S=1.2.3+2.3.4-1.2.3+...+99.100.101-98.99.100\)
\(3S=99.100.101=999900\)
\(S=999900:3\)
\(\Rightarrow S=333300\)
S=1×2+2×3+3×4+4×5+...........+99×100
3S=1×2×3+2×3×(4-1)+3×4×(5-2)+4×5×(6-3)+............+99×100×(101-98)
3S=1×2×3+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+.............+99×100×101-98×99×100
3S=99×100×101
Tại sao 3S=99×100×101
Các bạn giải thích hộ mình với!
MÌNH CẢM ƠN MỌI NGƯỜI!
Tính nhanh:
A = 1/3 - 3/4 - ( - 3/5 ) + 1/72 - 2/9 - 1/36 + 1/15
B = 1/ 5 - 3/7 + 5/9 - 2/11 + 7/13 - 9/16 - 7/13 + 2/11 - 5/9 + 3/7 - 1/5
C = 1/100 - 1/100 . 99 - 1/99 . 98 - 1/98 . 97 - ... - 1/3 . 2 - 1/ 2 . 1
C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\frac{99}{100}\)
=\(\frac{-98}{100}=\frac{-49}{50}\)
C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1)
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A
Dễ thấy 1/2.1 = 1/1 - 1/2
1/3.2 = 1/2 - 1/3
.....................
1/99.98 = 1/98 - 1/99
1/100.99 = 1/99 - 1/100
=> cộng từng vế với vế ta
\(B=\left(\frac{3}{7}+\frac{-3}{7}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{5}{9}+\frac{-5}{9}\right)+\left(\frac{2}{11}-\frac{2}{11}\right)\)
\(+\left(\frac{7}{13}-\frac{7}{13}\right)-\frac{9}{16}\)
\(=0+0+0+0-\frac{1}{16}\)
\(=\frac{-1}{16}\)