\(S=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3S=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(\Rightarrow3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(\Rightarrow3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(\Rightarrow3S=99.100.101=999900\Rightarrow S=999900\div3=333300\)
Vậy : \(S=333300\)
\(S=1.2+2.3+3.4+...+99.100\)
\(3S=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)
\(3S=1.2.3+2.3.4-1.2.3+...+99.100.101-98.99.100\)
\(3S=99.100.101=999900\)
\(S=999900:3\)
\(\Rightarrow S=333300\)