Chứng tỏ rằng:
\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
Chứng minh rằng: \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
Cmr : \(\dfrac{1}{3}\) - \(\dfrac{2}{3^2}\) +\(\dfrac{3}{3^3}\) - \(\dfrac{4}{3^4}\) + ...+\(\dfrac{99}{3^{99}}\) - \(\dfrac{100}{3^{100}}\) < \(\dfrac{3}{16}\)
1. 1+ (-2) + 3+ (-4) + . . . +19 + (-20)
2. 1 - 2 + 3- 4 + . . . + 99 - 100
3. -1 + 3 -5 + 7 - . . . +97 - 99
4. 1+ 2 - 3+ 4 + . . . +97 + 98 - 99 - 100
CMR: 100- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}\)
CMR 100-(1+\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\))= (\(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}\))
Chứng minh rằng : \(\dfrac{1}{3}\) - \(\dfrac{2}{3^2}\) + \(\dfrac{3}{3^3}\) - \(\dfrac{4}{3^4}\) + .......... + \(\dfrac{99}{3^{99}}\) - \(\dfrac{100}{3^{100}}\) < \(\dfrac{3}{16}\)
Chứng minh rằng \(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+.........+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\) < \(\dfrac{3}{16}\)
CMR \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\)