2x2 +2y2 +z2 + 25 -6y -2xy -8x +2z(y-x)=0
tìm x,y,z
bt x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0
tìm max và min của B=x+y+2020
\(x^2+2xy+y^2+6\left(x+y\right)+8=-y^2\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+8\le0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y+4\right)\le0\)
\(\Rightarrow-4\le x+y\le-2\)
\(\Rightarrow2016\le B\le2018\)
\(B_{min}=2016\) khi \(\left(x;y\right)=\left(-4;0\right)\)
\(B_{max}=2018\) khi \(\left(x;y\right)=\left(-2;0\right)\)
Tìm x,y,z
\(2x^2+2y^2+z^2+25-6y-2xy-8x+2z\left(y-x\right)=0\)
\(2x^2+2y^2+z^2+25-6y-2xy-8x+2z\left(y-x\right)=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-2z\left(x-y\right)+z+\left(x^2-8x+16\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2z\left(x-y\right)+z^2+\left(x-4\right)^2+\left(y-3\right)^2=0\)
\(\Leftrightarrow\left(x-y-z\right)^2+\left(x-4\right)^2+\left(y-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-z=0\\x-4=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=1\\x=4\\y=3\end{cases}}\)
Vậy \(x=4\), \(y=3\), \(z=1\)
Tìm x,y,z thoả mãn
2x²+2y²+z²+25-6y-8x-2z(y-x)=0
Tìm giá trị nhỏ nhất của biểu thức : B = 2x2+2y2+z2+2xy+2xz-6x-8y-2z+13
\(B=\left(x^2+y^2+4+2xy-4x-4y\right)+\left(x^2+z^2+1+2xz-2x-2z\right)+\left(y^2-4y+4\right)+4\)
\(B=\left(x+y-2\right)^2+\left(x+z-1\right)^2+\left(y-2\right)^2+4\ge4\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x+y-2=0\\x+z-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\\z=1\end{matrix}\right.\)
Tìm các số nguyên x,y,z biết x2+ 2y2 +2z2 < 2xy+ 2yz + 2z
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2z+1\right)< 1\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-1\right)^2< 1\)
Nếu tồn tại 1 trong 3 số \(x-y;y-z;z-1\) khác 0
Do x; y; z nguyên
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge1\) (vô lý)
\(\Rightarrow x-y=y-z=z-1=0\)
\(\Leftrightarrow x=y=z=1\)
cho x2+2y2+2xy-10x-12y+22=0
tìm Mã Min của P=x+y+1
Đúng thù thì ❤️ giúp mik nha bạn. Thx bạn
cho 3x - 6y + 2z = -4 và 3x - y -3z = 1(\(x,y,z\inℝ\) )
tính S = 9x2 - 8(y2 + z2 )
\(\left\{{}\begin{matrix}3x-6y+2z=-4\\3x-y-3z=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x-6y+2z=-4\\3x-y-3z=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x-6y=-4-2z\\3x-y=1+3z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5y=1+3z+4+2z\\3x-y=1+3z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5y=5+5z\\3x=y+1+3z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=1+z\\3x=1+z+1+3z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=1+z\\x=\dfrac{4z+6}{3}\end{matrix}\right.\)
\(S=9x^2-8\left(y^2+z^2\right)\)
\(S=9\left(\dfrac{4z+2}{3}\right)^2-8\left[\left(1+z\right)^2+z^2\right]\)
\(S=9.\dfrac{16z^2+16z+4}{9}-8\left[1+2z+z^2+z^2\right]\)
\(S=16z^2+16z+4-8-16z-16z^2\)
\(S=-4\)
Đính chính \(x=\dfrac{4z+2}{3}\) không phải \(x=\dfrac{4z+6}{3}\)
cho các số dương x,y,z thỏa mãn x+y+z=1 tìm min của biểu thức
P=√(2x2+xy+2y2) +√(2y2+yz+2z2)+ √(2z2+xz+2x2)
Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)
Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Chứng minh tương tự:
\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)
Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Bạn tham khảo nhé
https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737