Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi mai huong
Xem chi tiết
Lê Kiều Trinh
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 10 2021 lúc 14:04

\(a,P=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\left(x\ge0;x\ne1\right)\\ P=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(x+16\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\\ P=\dfrac{x+16}{\sqrt{x}+3}\\ b,P=4\Leftrightarrow\dfrac{x+16}{\sqrt{x}+3}=4\\ \Leftrightarrow x+16=4\sqrt{x}+12\\ \Leftrightarrow x-4\sqrt{x}+4=0\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\\ \Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)

\(c,P=\dfrac{x+16}{\sqrt{x}+3}=\dfrac{x-9+25}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}\\ P=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\ge2\sqrt{\left(\sqrt{x}+3\right)\cdot\dfrac{25}{\sqrt{x}+3}}-6=2\cdot5-6=4\\ P_{min}=4\Leftrightarrow\left(\sqrt{x}+3\right)^2=25\Leftrightarrow\sqrt{x}+3=5\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow x=4\left(tm\right)\)

\(d,x=3-2\sqrt{2}\Leftrightarrow\sqrt{x}=\sqrt{2}-1\\ \Leftrightarrow P=\dfrac{3-2\sqrt{2}+16}{\sqrt{2}-1+3}=\dfrac{19-2\sqrt{2}}{\sqrt{2}+2}\\ P=\dfrac{\left(19-2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}=\dfrac{42-23\sqrt{2}}{2}\)

Lê Hồng Ngọc
Xem chi tiết
Nguyễn Hưng Phát
4 tháng 7 2018 lúc 9:02

\(A^2=x+2+2\sqrt{\left(x+2\right)\left(2-x\right)}+2-x==4+2\sqrt{\left(x+2\right)\left(2-x\right)}\ge4\)

\(\Rightarrow A\ge2\).Nên GTNN của A là 2 đạt được khi \(\sqrt{\left(x+2\right)\left(2-x\right)}=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)

Áp dụng BĐT Bunhiacopxki ta có:

 \(A^2=\left(\sqrt{x+2}+\sqrt{2-x}\right)^2\le\left(1^2+1^2\right)\left[\left(\sqrt{x+2}\right)^2+\left(\sqrt{2-x}\right)^2\right]\)

      \(=2.\left(x+2+2-x\right)=2.4=8\)

\(\Rightarrow A\le\sqrt{8}\).Nên GTLN của A là \(\sqrt{8}\) đạt được khi \(\frac{\sqrt{x+2}}{1}=\frac{\sqrt{2-x}}{1}\Leftrightarrow\sqrt{x+2}=\sqrt{2-x}\)

\(\Rightarrow x+2=2-x\Leftrightarrow2x=0\Leftrightarrow x=0\)

Lê Hồng Ngọc
4 tháng 7 2018 lúc 22:49

bunhiacopxki là gì vậy ????????????????????

Lãnh Hàn Thiên Kinz
18 tháng 7 2020 lúc 7:59

bunhiacopxki là j thế bạn Bảo Bình

Khách vãng lai đã xóa
Nguyễn Minh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 5 2022 lúc 9:34

\(A=\sqrt{x}+\dfrac{2}{\sqrt{x}}\ge2\cdot\sqrt{\sqrt{x}\cdot\dfrac{2}{\sqrt{x}}}=2\sqrt{2}\)

Dấu '=' xảy ra khi \(\sqrt{x}\cdot\sqrt{x}=2\)

hay \(x=2\)

Ly Ly
Xem chi tiết
Yeutoanhoc
29 tháng 6 2021 lúc 8:52

`A=x-2sqrt{x+2}(x>=-2)`

`<=>A=x+2-2sqrt{x+2}+1-3`

`<=>A=(sqrt{x+2}-1)^2-3>=-3`

Dấu "=" xảy ra khi `sqrt{x+2}=1<=>x=-1(tmđk)`

Triết Phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 10 2021 lúc 22:49

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{2}{\sqrt{x}-2}-\dfrac{4\sqrt{x}}{x-4}\)

\(=\dfrac{x-2\sqrt{x}+2\sqrt{x}+4-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)

Hoa Thành
Xem chi tiết
....
Xem chi tiết
Trên con đường thành côn...
21 tháng 9 2021 lúc 21:45

undefined

ngọc linh
Xem chi tiết