C/m đẳng thức:
a) \(\frac{3y}{4}\) = \(\frac{6xy}{8x}\)
b) \(\frac{10}{15x}\) = \(\frac{20xy}{30x^2y}\)
c) \(\frac{3x^3y^5}{2xy^6}\) = \(\frac{3x^2}{2y}\)
tìm bậc của các đa thức sau
a.C=\(3x^2y-2xy^2+x^3y^3+3xy^2-2x^3y^3\)
b.D=15\(x^2y^3+7y^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3\)
c.E=\(3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
Thu gọn biểu thức
a) \(C=\frac{7}{9}x^3y^2\left(\frac{6}{11}axy^3\right)+\left(-5bx^2y^4\right)\left(\frac{-1}{2}axz\right)+ax\left(x^2y\right)^3\)
b)\(D=\frac{\left(3x^4y^4\right)^2\left(\frac{6}{11}x^3y\right)\left(8x^{n-7}\right)\left(-2x^{7-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)^2}\)(với axyz khác 0)
\(C=\frac{7}{9}x^3y^2\left(\frac{6}{11}axy^3\right)+\left(-5bx^2y^4\right)\left(\frac{-1}{2}axz\right)+ax\left(x^2y\right)^3\)
\(\Rightarrow C=\frac{42}{9}ax^4y^5+\frac{5}{2}abx^3y^4z+ax\left(x^6y^3\right)\)
\(\Rightarrow C=\frac{42}{9}ax^4y^5+\frac{5}{2}abx^3y^4z+ax^7y^3\)
\(D=\frac{\left(3x^4y^4\right)^2\left(\frac{6}{11}x^3y\right)\left(8x^{n-7}\right)\left(-2x^{7-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)^2}\)
\(D=\frac{\left[3.\frac{6}{11}.8.\left(-2\right)\right]\left(x^8x^3x^{n-7}x^{7-n}\right)\left(y^8y\right)}{15.0,4.\left(x^3x^4\right)\left(y^2y^4\right)z^4a}\)
\(D=\frac{\frac{-188}{11}x^{24}y^9}{6x^7y^6z^4a}\)
Làm tiếp bài của Song Ngư (๖ۣۜO๖ۣۜX๖ۣۜA)
\(D=\frac{\frac{-188}{11}x^{17}y^3}{6z^4a}\)
thu gọn đa thức, tìm bậc , hệ số :
A=\(15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3\)
B=\(3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
BẠN NÀO LÀM ĐÚNG MÌNH SẼ CHO 5 TICK !!!!!!!!!!!
chứng minh các phân thức sau
a) \(\frac{3y}{4}=\frac{6xy}{8x}\left(x\ne0\right)\)
b)\(\frac{-3x^2}{2y}=\frac{3x^2}{-2y}\left(y\ne0\right)\)
c)\(\frac{2\left(x-y\right)}{3\left(y-x\right)}=\frac{-2}{3}\left(x\ne y\right)\)
a, Ta có : \(\frac{3y}{4}=\frac{3y}{4}.1=\frac{3y}{4}.\frac{2x}{2x}=\frac{6xy}{8x}\) ( đpcm )
b, Ta có : \(6x^2y=6x^2y\)
=> \(3x^2.2y=\left(-3x^2\right).\left(-2y\right)\)
=> \(\frac{-3x^2}{2y}=\frac{3x^2}{-2y}\) ( đpcm )
c, Ta có : \(6x-6y=6x-6y\)
=> \(6x-6y=-6y+6x\)
=> \(6\left(x-y\right)=-6\left(y-x\right)\)
=> \(2\left(x-y\right).3=-2\left(y-x\right).3\)
=> \(\frac{2\left(x-y\right)}{3\left(y-x\right)}=\frac{-2}{3}\) ( đpcm )
Thu gọn các đơn thức trong biểu thức đại số.
a) \(C=\frac{7}{9}x^3y^2.\left(\frac{6}{11}axy^3\right)+\left(-5bx^2y^4\right).\left(\frac{-1}{2}axz\right)+ax\left(x^2y\right)^3\)
b) \(D=\frac{\left(3x^4y^3\right)^2.\left(\frac{1}{6}x^2y\right)+\left(8x^{n-9}\right).\left(-2x^{9-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)}\)
5,thực hiện phép tính
1,\(\frac{4y^2}{11x^4}.\left(-\frac{3x^2}{8y}\right)\)
2,\(\frac{4x^2}{5y^2}:\frac{6x}{5y}:\frac{2x}{3y}\)
3,\(\frac{x^2-4}{3x+12}.\frac{x+4}{2x-4}\)
4,\(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)
5,\(\frac{x^2-36}{2x+10}.\frac{3}{6-x}\)
6,\(\frac{x^2-9y^2}{x^2y^2}.\frac{3xy}{2x-6y}\)
7,\(\frac{3x^2-3y^2}{5xy}.\frac{15x^2y}{2y-2x}\)
1, \(\frac{4y^2}{11x^4}.\left(-\frac{3x^2}{8y}\right)\)\(=\frac{4y.y}{11x^2.x^2}.\frac{-3x^2}{2.4y}\)\(=\frac{y}{11x^2}.\frac{-3}{2}=\frac{-3y}{22x^2}\)
2, \(\frac{4x^2}{5y^2}:\frac{6x}{5y}:\frac{2x}{3y}\)\(=\frac{4x^2}{5y^2}.\frac{5y}{6x}.\frac{3y}{2x}\)\(=\frac{2x.2x}{5y.y}.\frac{5y}{3.2x}.\frac{3y}{2x}\)\(=\frac{2x}{y}.\frac{1}{3}.\frac{3y}{2x}\)
\(\frac{2x}{3y}.\frac{3y}{2x}=1\)
3, \(\frac{x^2-4}{3x+12}.\frac{x+4}{2x-4}\)\(=\frac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}.\frac{x+4}{2\left(x-2\right)}\)\(=\frac{\left(x+2\right)}{3}.\frac{1}{2}=\frac{x+2}{6}\)
4, \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)\(=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\left(-\frac{2\left(x-2\right)}{x+2}\right)=\frac{5}{4}.\frac{-2}{1}=-\frac{5}{2}\)
5, \(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{3}{-\left(x-6\right)}=\frac{x+6}{2\left(x+5\right)}.\frac{-3}{1}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)
6, \(\frac{x^2-9y^2}{x^2y^2}.\frac{3xy}{2x-6y}=\frac{\left(x-3y\right)\left(x+3y\right)}{\left(xy\right)^2}.\frac{3xy}{2\left(x-3y\right)}=\frac{x+3y}{xy}.\frac{3}{2}=\frac{3\left(x+3y\right)}{2xy}\)
7, \(\frac{3x^2-3y^2}{5xy}.\frac{15x^2y}{2y-2x}=\frac{3\left(x-y\right)\left(x+y\right)}{5xy}.\frac{5xy.3x}{-2\left(x-y\right)}=\frac{3\left(x+y\right)}{1}.\frac{3x}{-2}=\frac{-9x\left(x+y\right)}{2}\)
Tìm đa thức M , biết :
a) \(M-\left(\frac{1}{2}x^2y-5xy^2+x^3-y^3\right)=\frac{3}{4}xy^2-2x^2y+\)\(2y^3-\frac{1}{3}x^3\)
b)\(\left(-\frac{1}{3}x^3y^3+5x^2y^2-\frac{5}{2}xy\right)-M=xy-\frac{1}{6}x^3y^3-3x^2y^2\)
c)\(\left(\frac{2}{7}xy^4-5x^5+7x^2y^3-3\right)+M=0\)
bài 1 : thu gọn đa thức , tìm bậc , hệ số cao nhất
A = 15x^2y^3 + 7x^2 - 8x^3y^2 - 12x^2 + 11x^3y^2 - 12x^2y^3
B = 3x^5y + \(\frac{1}{3}\)xy^4 + \(\frac{3}{4}\)x^2y^3 - \(\frac{1}{2}\)x^5y + 2xy^4 - x^2y^3
bài 2 : tính giá trị biểu thức
A = 3x^3y + 6x^2y^2 + 3xy^3 tại x = \(\frac{1}{2}\); y = -\(\frac{1}{3}\)
B = x^2y^2 + xy +x^3 + y^3 tại x = -1 ; y = 3
bài 3 : cho đa thức
P(x) = x^4 + 2x^2 + 1
Q(x) = x^4 + 4x^3 + 2x^2- 4x + 1
tính P(-1); P(\(\frac{1}{2}\)) ; q(-2);Q(1)
bài 4 : tìm hệ số a của đa thức M(x)= ax^2 + 5x - 3 , tại M (-3) = 0
bài 5 : tìm các hệ số a , b của đa thức f(x) = ax + b , biết f(2) = 3 ; f(-1) = 9
\(\frac{x^2-36}{2x+10}.\frac{3}{6-x}\)
\(\frac{x^2-9y^2}{x^2y^2}.\frac{3xy}{2x-6y}\)
\(\frac{3x^2-3y^2}{5xy}.\frac{15x^2y}{2y-2x}\)
(x-6)(x+6)/2x+10 * -3(x-6)= 3x+18/2x+10
(x-3y)(x+3y)/x^2y^2* 3xy/2(x-3y)=3x+9y/2xy
3(x-y)(x+y)/5xy * -15x^2y/2(X-y)=-9x/2
\(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x+6\right)\left(x-6\right)}{2x+10}.\frac{3}{-x+6}.\)
\(=\frac{x-6}{2x+10}.\frac{3}{-1}=\frac{3x+18}{-2x-10}\)