Cho \(a,b,c\ne0\); \(a+b\ne c\); \(b+c\ne a\)thỏa mãn \(\frac{a^2+b^2-c^2}{2ab}-\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}=1.\)
Chứng minh rằng \(a+b+c=0.\)
Cho: \(\dfrac{a}{c}=\dfrac{a-b}{b-c},a\ne0,c\ne0,a-b\ne0,b-c\ne0\). CMR: \(\dfrac{1}{a}+\dfrac{1}{a-b}=\dfrac{1}{b-c}-\dfrac{1}{c}\)
Cho \(\frac{a}{c}=\frac{a-b}{b-c}\),\(a\ne0,c\ne0,a-b\ne0,b-c\ne0\).Chứng minh rằng \(\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\)
\(\frac{a}{c}=\frac{a-b}{b-c}\Rightarrow a\left(b-c\right)=c\left(a-b\right)\) (1)
\(\frac{1}{c}+\frac{1}{a-b}=\frac{a-b+c}{c\left(a-b\right)}\) (2)
\(\frac{1}{b-c}-\frac{1}{a}=\frac{a-b+c}{a\left(b-c\right)}\) (3)
\(Từ\left(1\right),\left(2\right),\left(3\right)\Rightarrow\)điều phải chứng minh
cho dãy tỉ số bằng nhau
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}\)
\(=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
tính giá trị biểu thức \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(\left(a,b,c,d\ne0;a+b+c+d\ne0;a+b\ne0;b+c\ne0;c+d\ne0;d+a\ne0\right)\)
Cho \(a+b+c=a^2+b^2+c^2=1\) và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) \(\left(a\ne0,b\ne0,c\ne0\right)\)
Chứng minh rằng: \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Lời giải:
Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$
$\Rightarrow x=at; y=bt; z=ct$. Ta có:
$(x+y+z)^2=(at+bt+ct)^2=t^2(a+b+c)^2=t^2(*)$
Mặt khác:
$x^2+y^2+z^2=(at)^2+(bt)^2+(ct)^2=t^2(a^2+b^2+c^2)=t^2(**)$
Từ $(*); (**)\Rightarrow (x+y+z)^2=x^2+y^2+z^2$ (đpcm)
Cho \(abc\ne0\) và \(a+b+c\ne0\). Tìm \(x\), biết: \(\dfrac{a+b-x}{c}+\dfrac{a+c-x}{b}+\dfrac{b+c-x}{a}+\dfrac{4x}{a+b+c}=1\)
Lời giải:
PT $\Leftrightarrow \frac{a+b-x}{c}+1+\frac{a+c-x}{b}+1+\frac{b+c-x}{a}+1+\frac{4x}{a+b+c}-4=0$
$\Leftrightarrow \frac{a+b+c-x}{c}+\frac{a+b+c-x}{b}+\frac{a+b+c-x}{a}-\frac{4(a+b+c-x)}{a+b+c}=0$
$\Leftrightarrow (a+b+c-x)(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c})=0$
$\Rightarrow a+b+c-x=0$ hoặc $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}=0$
Nếu $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}=0$, khi đó $x$ nhận mọi giá trị thực.
Nếu $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}\neq 0$
$\Rightarrow a+b+c-x=0$
$\Rightarrow x=a+b+c$
cho \(\hept{\begin{cases}b+c\ne0\\c+a\ne0\\b-a\ne0\end{cases}}\)và c < 0, b > 0 thỏa mãn \(\frac{a}{b+c}-\frac{b}{c+a}+\frac{c}{b-a}=0\)CMR a < 0
Cho tỉ lệ thức \(\frac{a+b}{c+b}=\frac{a}{c}\)
Với \(a,c\ne0;c+b\ne0;b\ne0\)Vậy\(\frac{c}{a}=\)Giúp mk với
Ta có \(\frac{a}{c}=\frac{b}{b}=\frac{a+b}{c+b}\) (tính chất tỉ lệ thức)
Vậy \(\frac{a}{c}=\frac{b}{b}=1\)
\(\Rightarrow a=c\)
Vậy \(\frac{c}{a}=1\)
\(\frac{a+b}{c+b}=\frac{a}{c}=\frac{a+b-a}{c+b-c}=\frac{b}{b}=1\)
=) \(\frac{a}{c}=1\)=) \(\frac{c}{a}=1\)
Ta có ; \(\frac{a+b}{c+b}=\frac{a}{c}=\frac{a+b-a}{c+b-c}=\frac{b}{b}=1\)
Nên \(\frac{a}{c}=1\) => a = c
Vậy \(\frac{c}{a}=1\)
Vận dụng tính chất dãy tỉ số bằng nhau:
a)Cho \(ac=b^2;ab=c^2;a+b+c\ne0;a,b,c\ne0\)
Tính:\(P=\frac{b^{333}}{a^{111}\cdot c^{222}}\)
b)Cho \(x^2=yz;y^2=xz;x+y+z\ne0;xyz\ne0\)
a) \(ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(ab=c^2\Rightarrow\frac{a}{c}=\frac{c}{b}\)
Suy ra: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(P=\frac{b^{333}}{a^{111}.c^{222}}=\frac{b^{333}}{a^{111}.c^{111}.c^{111}}=\frac{b^{333}}{\left(ac\right)^{111}.c^{111}}=\frac{b^{333}}{\left(b^2\right)^{111}.c^{111}}=\frac{b^{333}}{b^{222}.c^{111}}=\frac{b^{111}}{c^{111}}=\left(\frac{b}{c}\right)^{111}\)
\(=1^{111}=1\)
Cho a + b + c = 0 \(\left(a\ne0,b\ne0,c\ne0\right)\). Rút gọn biểu thức:
\(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
Ta có a+b+c=0 => b+c=-a => a^2=b^2+2bc+c^2=> a^2-b^2-c^2=2bc
Tương tự ta có : b^2-c^2-a^2=2ca
c^2-a^2-b^2=2ab
=> a^2/2bc+b^2/2ca+c^2/2ab=(a^3+b^3+c^3)/2abc
=>Ta lại có a^3+b^3+c^3=(a+b+c)^3+
Cho \(b\ne-d;b\ne-3d;b\ne0;d\ne0\) và \(\dfrac{a+3c}{b+3d}=\dfrac{a+c}{b+d}\) . Chứng minh : \(\dfrac{a}{b}=\dfrac{c}{d}\)
Ta có: \(\dfrac{a+3c}{b+3d}=\dfrac{a+c}{b+d}\left(b\ne-d;b\ne-3d;b\ne0;d\ne0\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
+, \(\dfrac{a+3c}{b+3d}=\dfrac{a+c}{b+d}=\dfrac{a+3c-\left(a+c\right)}{b+3d-\left(b+d\right)}=\dfrac{a+3c-a-c}{b+3d-b-d}=\dfrac{2c}{2d}=\dfrac{c}{d}\)
Khi đó: \(\dfrac{a+c}{b+d}=\dfrac{c}{d}\)
+, \(\dfrac{a+c}{b+d}=\dfrac{c}{d}=\dfrac{a+c-c}{b+d-d}=\dfrac{a}{b}\) (đpcm)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{a+3c}{b+3d}=\dfrac{a+c}{b+d}=\dfrac{a+3c-\left(a+c\right)}{b+3d-\left(b+d\right)}=\dfrac{2c}{2d}=\dfrac{c}{d}\) (1)
\(\dfrac{a+3c}{b+3d}=\dfrac{a+c}{b+d}=\dfrac{3a+3c}{3b+3d}=\dfrac{a+3c-\left(3a+3c\right)}{b+3d-\left(3b+3d\right)}=\dfrac{-2a}{-2b}=\dfrac{a}{b}\) (2)
(1);(2) \(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)