Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jackson Roy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 4 2019 lúc 22:38

\(sinx+cosx=\frac{1}{2}\Rightarrow\left(sinx+cosx\right)^2=\frac{1}{4}\Rightarrow sin^2x+cos^2x+2sinx.cosx=\frac{1}{4}\)

\(\Rightarrow2sinx.cosx=\frac{1}{4}-1=-\frac{3}{4}\Rightarrow sinx.cosx=-\frac{3}{8}\)

Vậy ta có:

\(sin^3x+cos^3x=\left(sinx+cosx\right)\left[\left(sinx+cosx\right)^2-3sinx.cosx\right]\)

\(=\frac{1}{2}\left(\frac{1}{4}+\frac{9}{8}\right)=\frac{11}{16}\)

Bài 2: Mục đích của bài này là gì bạn? Ko thấy yêu cầu?

Bài 3:

\(tanx+cotx=2\Rightarrow\left(tanx+cotx\right)^2=4\)

\(\Rightarrow tan^2x+2tanx.cotx+cot^2x=4\Rightarrow tan^2x+cot^2x+2=4\)

\(\Rightarrow tan^2x+cot^2x=2\)

Moon Jim Kim
Xem chi tiết
Hân Ngọc
29 tháng 4 2020 lúc 21:32

\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)

\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)

b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)

=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)

d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)

\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)

=\(\frac{1}{cosx.sinx}=VP\)

e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)

c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)

=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)

\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)

Đây nha bạn

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 7 2020 lúc 20:55

a/

\(\Leftrightarrow5+5cosx=2+\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)\)

\(\Leftrightarrow3+5cosx=sin^2x-cos^2x\)

\(\Leftrightarrow3+5cosx=\left(1-cos^2x\right)-cos^2x\)

\(\Leftrightarrow2cos^2x+5cosx+2=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=-2\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)

b/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{3}tanx+\frac{1}{tanx}-\sqrt{3}-1=0\)

\(\Leftrightarrow\sqrt{3}tan^2x-\left(\sqrt{3}+1\right)tanx+1=0\)

\(a+b+c=\sqrt{3}-\left(\sqrt{3}+1\right)+1=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=\frac{1}{\sqrt{3}}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
26 tháng 7 2020 lúc 20:57

c/

\(\Leftrightarrow6\left(\frac{1-cos2x}{2}\right)+2\left(1-cos^22x\right)=5\)

\(\Leftrightarrow-2cos^22x-3cos2x=0\)

\(\Leftrightarrow cos2x\left(2cos2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2x=\frac{\pi}{2}+k\pi\)

\(\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

Nguyễn Việt Lâm
26 tháng 7 2020 lúc 21:00

d/

\(\Leftrightarrow cos^22x+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{\pi}{2}\right)-1=0\)

\(\Leftrightarrow1-sin^22x+\frac{1}{2}sin2x-\frac{1}{2}=0\)

\(\Leftrightarrow-2sin^22x+sin2x+1=0\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

Capheny Bản Quyền
Xem chi tiết
Capheny Bản Quyền
Xem chi tiết
Violet
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 7:33

Câu 2 bạn coi lại đề

3.

\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)

\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)

\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 7:33

4.

Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm

5.

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)

\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)

\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)

\(\Leftrightarrow2sin^3x-sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)

\(\Leftrightarrow...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 7:34

6.

\(sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-2\sqrt{3}cosx.sin2x.cos2x\)

\(\Leftrightarrow sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-\sqrt{3}cosx.sin4x\)

\(\Leftrightarrow sin4x\left(sinx+\sqrt{3}cosx\right)=\sqrt{2}sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin4x\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin4x.sin\left(x+\frac{\pi}{3}\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left(sin4x-\frac{\sqrt{2}}{2}\right)sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=\frac{\sqrt{2}}{2}\\sin\left(x+\frac{\pi}{3}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Kuramajiva
Xem chi tiết
Hồng Phúc
8 tháng 2 2022 lúc 14:46

a, ĐK: \(x\ne\dfrac{5\pi}{6}+k2\pi;x\ne\dfrac{\pi}{6}+k2\pi\)

\(\dfrac{2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)}{2sinx-1}=-1\)

\(\Leftrightarrow2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)=1-2sinx\)

\(\Leftrightarrow-cos\left(3x-\dfrac{\pi}{2}\right)+\sqrt{3}cos^3x.\dfrac{cos^2x-3sin^2x}{cos^2x}=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(cos^2x-3sin^2x\right)=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(4cos^2x-3\right)=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cos3x=-2sinx\)

\(\Leftrightarrow\dfrac{1}{2}sin3x-\dfrac{\sqrt{3}}{2}cos3x-sinx=0\)

\(\Leftrightarrow sin\left(3x-\dfrac{\pi}{3}\right)-sinx=0\)

\(\Leftrightarrow2cos\left(2x-\dfrac{\pi}{6}\right)sin\left(x-\dfrac{\pi}{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(2x-\dfrac{\pi}{6}\right)=0\\sin\left(x-\dfrac{\pi}{6}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k\pi\\x-\dfrac{\pi}{6}=k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

Đối chiếu điều kiện ta được:

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\\x=\dfrac{7\pi}{6}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

Ngoc Nhi Tran
Xem chi tiết
Julian Edward
Xem chi tiết
Aki Tsuki
18 tháng 8 2020 lúc 6:58

Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁCChương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁCChương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Aki Tsuki
18 tháng 8 2020 lúc 6:42

a.

Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Aki Tsuki
18 tháng 8 2020 lúc 6:48

Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC