Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 2 2019 lúc 7:34

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Nhận xét:

Do giả thiết cho IJ không song song với CD và chúng cùng nằm trong mặt phẳng (BCD) nên khi kéo dài chúng gặp nhau tại một điểm.

Gọi K = IJ ∩ CD.

Ta có: M là điểm chung thứ nhất của (ACD) và (IJM);

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (MIJ) ∩ (ACD) = MK

b) Với L = JN ∩ AB ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Như vậy L là điểm chung thứ nhất của hai mặt phẳng (MNJ) và (ABC)

Gọi P = JL ∩ AD, Q = PM ∩ AC

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nên Q là điểm chung thứ hai của (MNJ) và (ABC)

Vậy LQ = (ABC) ∩ (MNJ).

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
25 tháng 5 2017 lúc 14:42

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 13:23

loading...

• Gọi \(I\) là giao điểm của \(AM\) và \(BC\). Ta có:

\(\left. \begin{array}{l}d\parallel SA\\M \in d\\M \in \left( {SAI} \right)\end{array} \right\} \Rightarrow d \subset \left( {SAI} \right)\)

Gọi \(N\) là giao điểm của \(d\) và \(SI\). Ta có:

\(\left. \begin{array}{l}N \in d\\N \in SI \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow N = d \cap \left( {SBC} \right)\)

• Ta có:

\(\left. \begin{array}{l}C \in \left( {SAC} \right) \cap \left( {CMN} \right)\\SA\parallel d\\SA \subset \left( {SAC} \right)\\d \subset \left( {CMN} \right)\end{array} \right\}\)

\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {CMN} \right)\) là đường thẳng \(d'\) đi qua \(C\), song song với \(SA\) và \(d\).

Nishimiya shouko
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 6 2019 lúc 15:23

Giải bài 3 trang 126 sgk Hình học 11 | Để học tốt Toán 11

a) Gọi N là giao điểm của EM và CD

Vì M là trung điểm của AB nên N là trung điểm của CD (do ABCD là hình thang)

⇒ EN đi qua G

⇒ S, E, M, G ∈ (α) = (SEM)

Gọi O là giao điểm của AC và BD

Ta có (α) ∩ (SAC) = SO

và (α) ∩ (SBD) = SO = d

b) Ta có: (SAD) ∩ (SBC) = SE

c) Gọi O' = AC' ∩ BD'

Ta có AC' ⊂ (SAC), BD' ⊂ (SBD)

⇒ O' ∈ SO = d = (SAC) ∩ (SBD)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 9 2023 lúc 19:51

a: \(SB\subset\left(SAB\right)\)

\(SB\subset\left(SBD\right)\)

Do đó: \(\left(SAB\right)\cap\left(SBD\right)=SB\)

b: \(F\in SB\subset\left(SAB\right);F\in\left(SDF\right)\)

Do đó: \(F\in\left(SAB\right)\cap\left(SDF\right)\)

mà \(S\in\left(SAB\right)\cap\left(SDF\right)\)

nên \(\left(SAB\right)\cap\left(SDF\right)=SF\)

c: \(F\in SB\subset\left(SBC\right);F\in\left(FCD\right)\)

\(\Leftrightarrow F\in\left(SBC\right)\cap\left(FCD\right)\)

mà \(C\in\left(CBS\right)\cap\left(FCD\right)\)

nên \(\left(FCD\right)\cap\left(SBC\right)=CF\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 9 2023 lúc 19:46

a: Trong mp(ABCD), Gọi giao của AC và BD là O

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà S thuộc (SAC) giao (SBD)

nên (SAC) giao (SBD)=SO

b:Trong mp(ABCD), Gọi giao của AB và CD là M

\(M\in AB\subset\left(SAB\right)\)

\(M\in CD\subset\left(SCD\right)\)

=>M thuộc (SAB) giao (SCD)

mà S thuộc (SAB) giao (SCD)

nên (SAB) giao (SCD)=SM

c: Trong mp(ABCD), gọi N là giao của AD với BC

\(N\in AD\subset\left(SAD\right);N\in BC\subset\left(SBC\right)\)

Do đó: \(N\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SN\)

Bình Như
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 12 2020 lúc 10:14

a. 

Trong mp (SAB) nối PM kéo dài cắt SB tại G

Trong mp (ABCD) nối PN cắt BC kéo dài tại H

\(\Rightarrow GH=\left(MNP\right)\cap\left(SBC\right)\)

b.

Nối SE cắt AD tại I, nối SF cắt BC tại K

Trong mp (ABCD), nối IK cắt PN kéo dài tại S

Trong mp (SBC), SF kéo dài cắt GH tại R

\(\Rightarrow RS\) là giao tuyến của (MNP) và (SEF)

Trong mp (SEF), nối RS và EF cắt nhau tại Q

\(\Rightarrow Q=EF\cap\left(MNP\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 5 2017 lúc 8:28

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nhận xét

Gọi (α) là mặt phẳng qua SM và song song với AB.

Ta có BC // (α) và (ABC) là mặt phẳng chứa BC nên (ABC) sẽ cắt (α) theo giao tuyến d đi qua M và song song với BC, d cắt AC tại N.

Ta có (α) chính là mặt phẳng (SMN). Vì M là trung điểm AB nên N là trung điểm AC.

+ Xác định khoảng cách.

Qua N kẻ đường thẳng d’ song song với AB.

Gọi (P) là mặt phẳng đi qua SN và d’.

Ta có: AB // (P).

Khi đó: d(AB, SN) = d(A, (P)).

Dựng AD ⊥ d’, ta có AB // (SDN). Kẻ AH vuông góc với SD, ta có AH ⊥ (SDN) nên:

d(AB, SN) = d(A, (SND)) = AH.

Trong tam giác SAD, ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trong tam giác SAB, ta có S A   =   A B . tan 60 o   =   2 a 3 và AD = MN = BC/2 = a.

Thế vào (1), ta được

Giải sách bài tập Toán 11 | Giải sbt Toán 11