a) Tính A = [ 15 (x - y)5 - 10 (x - y)4 - 5 (x - y)3 ] : [ 5 (x - y)3]
b) Phân tích A thành nhân tử
1, tính a/ (3+√5)(√10 - √2)√(3-√5)
b/[√2-√(3-√5)].√2
c/(√10 + √6).√(8-2√15)
2, tìm x biết a/ √(x+5)=1+√x
b/√x + √(x-1)=1
c/ √(3-x) + √(x-5)=10
3, phân tích đa thức thành nhân tử:
a/ ab+b√a+√a+1 với a ≥0
b/ x-2√xy + y với x,y ≥ 0
c/√xy + 2√x - 3√y -6 với x,y ≥ 0
4, chứng minh rằng a/ (4+√15).(√10-√6).√(4-√15)=2
b/ √a + √b > √(a+b) (a,b>0)
5, Cho √(8-a) + √(5+a) = 5 tính √[(8-a).(5+a)]
6, rút gọn √(7+2√10)-√15
P/s : mn giúp e với nha
Bài 1: Phân tích thành nhân tử 3) x ^ 2(x - 1) + 2x * (1 - x) 5) y ^ 2(x ^ 2 + y) - zx ^ 2 - zy 7) 5(x + y) ^ 2 + 15(x + y) 9) 7x(y - 4) ^ 2 - (4 - y) ^ 3; 11)(x+1)(y-2)-(2-y)^ 2 2) 5x(x - 2) - 3x ^ 2(x - 2) 4) 3x(x - 5y) - 2y(5y - x) 6) b(a - c) + 5c - 5a 8) 9x(x - y) - 10(y - x) ^ 2 10) (a - b) ^ 2 - (a + b)(b - a) 12) 2x(x - 3) + y(x - 3) + (3 - x)
Phân tích các đa thức sau thành nhân tử :
a) 3x2 – 7x + 2;
b) a(x2 + 1) – x(a2 + 1).;
c)(x+2)(x+3)(x+4)(x+5)-24;
d)(a+1)(a+3)(a+5)(a+7)+15;
e)x2 + 2xy + 7x + 7y + y2 + 10
(x2 là x bình,y 2 là y bình,a2 là a bình nha)
Giúp mình với:33
a) 3x2 – 7x + 2
\(=3x^2-6x-x+2\)
\(=\left(3x^2-6x\right)-\left(x-2\right)\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
b) a(x2 + 1) – x(a2 + 1)
\(=ax^2+a-\left(a^2x+x\right)\)
\(=a\left(x^2+1\right)-x\left(a^2+1\right)\)
.......?
a) Ta có: \(3x^2-7x+2\)
\(=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
b) Ta có: \(a\left(x^2+1\right)-x\left(a^2+1\right)\)
\(=x^2a+a-a^2x-x\)
\(=\left(x^2a-a^2x\right)+\left(a-x\right)\)
\(=xa\left(x-a\right)-\left(x-a\right)\)
\(=\left(x-a\right)\left(xa-1\right)\)
c) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)
\(=\left(x^2+7x\right)^2+16\left(x^2+7x\right)+6\left(x^2+7x\right)+96\)
\(=\left(x^2+7x\right)\left(x^2+7x+16\right)+6\left(x^2+7x+16\right)\)
\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)
\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)
d) Ta có: \(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+15\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+120\)
\(=\left(a^2+8a\right)^2+12\left(a^2+8a\right)+10\left(a^2+8a\right)+120\)
\(=\left(a^2+8a\right)\left(a^2+8a+12\right)+10\left(a^2+8a+12\right)\)
\(=\left(a^2+8a+12\right)\left(a^2+8a+10\right)\)
\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)
Phân tích thành nhân tử : a) 5x^2 ( x - 2y ) - 15x ( x - 2y ) b) 3 ( x - y ) - 5x ( y - x ) c) 10x ( x - y ) - 8y ( y - x ) d) x^2 ( x - 5 ) + 4 ( 5 - x )
a) \(5x^2\)\(\left(x-2y\right)\)\(-\)\(15x\)\(\left(x-2y\right)\)
\(=\left(x-2y\right)\left(5x^2-15x\right)\)
\(=5x\left(x-2y\right)\left(x-3\right)\)
b) \(3\left(x-y\right)\)\(-\)\(5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(3+5x\right)\)
c) \(10x\left(x-y\right)\)\(-\)\(8y\left(y-x\right)\)
\(=\)\(10x\left(x-y\right)+8y\left(x-y\right)\)
\(=\left(x-y\right)\left(10x+8y\right)\)
\(=2\left(5x+4\right)\left(x-y\right)\)
d) \(x^2\)\(\left(x-5\right)\)\(+\)\(4\)\(\left(5-x\right)\)
\(=x^2\)\(\left(x-5\right)\)\(-\)\(4\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2-4\right)\)
\(=\left(x-5\right)\left(x-2\right)\left(x-2\right)\)
a) \(5x^2\left(x-2y\right)-15x\left(x-2y\right)\)
\(=\left(x-2y\right)\left(5x^2-15x\right)\)
\(=\left(x-2y\right)\left(x-3\right)5x\)
b)\(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(3+5x\right)\left(x-y\right)\)
c)\(10x\left(x-y\right)-8y\left(y-x\right)\)
\(=10x\left(x-y\right)+8y\left(x-y\right)\)
\(=\left(10x+8y\right)\left(x-y\right)\)
\(=2\left(5x+4y\right)\left(x-y\right)\)
d)\(x^2\left(x-5\right)+4\left(5-x\right)\)
\(=x^2\left(x-5\right)-4\left(x-5\right)\)
\(=\left(x^2-4\right)\left(x-5\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-5\right)\)
Trả lời:
1, 5 ( x + y )2 + 15 ( x + y )
= 5( x + y ) ( x + y + 3 )
2, ( a - b )2 - ( a + b )( b - a )
= ( a - b )2 + ( a + b )( a - b )
= ( a - b )( a - b + a + b )
= 2a ( a - b )
1. Phân tích đã thức thành nhân tử: x^8 +y^8
2. Tính chia.
a, (5x^4 - 2x^3 + x^2) : 2x^2
b, (xy^2 + 1/3 x^2 y^3 + 7/2 x^3 y) : 5xy
c, (15x^3 y^5 - 20 x^4 y^4 -25 x^5 y^3) : (-5x^3 y^2)
Phân tích các đa thức sau thành nhân tử: a) x3 - 2x2 + x b) x2 – 2x – 15 c) 5x2y 3 – 25x3y 4 + 10x3y 3 d) 12x2y – 18xy2 – 30y2 e) 5(x-y) – y.( x – y) g)36 – 12x + x2 h) 4x2 + 12x + 9 i) 11x + 11y – x 2 – xy
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.
Bài 1 : Phân tích các đa thức sau thành nhân tử :
1) 15x + 15y 2) 8x - 12y
3) xy - x 4) 4x^2- 6x
Bài 2 : Phân tích các đa thức sau thành nhân tử :
1) 2(x + y) - 5a(x + y) 2) a^2(x - 5) - 3(x - 5)
3) 4x(a - b) + 6xy(a - b) 4) 3x(x - 1) + 5(x -1)
Bài 3 : Tính giá trị của biểu thức :
1) A = 13.87 + 13.12 + 13
2) B = (x - 3).2x + (x - 3).y tại x = 13 và y = 4
Bài 4 : Tìm x :
1) x(x - 5) - 2(x - 5) = 0 2) 3x(x - 4) - x + 4 = 0
3) x(x - 7) - 2(7 - x) = 0 4) 2x(2x + 3) - 2x - 3 = 0
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Phân tích đa thức sau thành nhân tử:
a,x^6+3x^5+4x^4+4x^3+4x^2+3x+1
b,x^10+x^5+1
c,(x+y+z)^3-x^3-y^3-z^3
ai lm đúng mk tick cho
x^10 + x^5 + 1
= x^10 + x^9 - x^9 + x^8 - x^8 + x^7 - x^7 + x^6 - x^6 + x^5 + x^5 - x^5 + x^4 - x^4 + x^3 - x^3 + x^2 - x^2 + x - x + 1
= (x^10 + x^9 + x^8) - (x^9 + x^8 + x^7) + (x^7 + x^6 + x^5) - (x^6 + x^5 + x^4) + (x^5 + x^4 + x^3) - (x^3 + x^2 + x) + (x^2 + x + 1)
= x^8 (x^2 + x + 1) - x^7 (x^2 + x + 1) + x^5 (x^2 + x + 1) - x^4 (x^2 + x + 1) + x^3 (x^2 + x + 1) - x (x^2 + x + 1) + (x^2 + x + 1)
= (x^2 + x + 1) (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)
x^6 + 3x^5 + 4x^4 + 4x^3 + 4x^2 + 3x + 1
Câu này có thể áp dụng định lý : nếu tổng các hệ số biến bậc chắn và tổng các hệ số biến bậc lẻ bằng nhau thì đa thức có nhân tử x + 1
- Nhận thấy : 1+4+4+1 = 3+4+3
x^6 + 3x^5 + 4x^4 + 4x^3 + 4x^2 + 3x + 1
= ( x^6 + x^5 ) + ( 2x^5 + 2x^4 ) + ( 2x^4 + 2x^3 ) + ( 2x^3 + 2x^2 ) + ( 2x^2 + 2x ) + ( x+ 1 )
= x^5.(x+1) + 2x^4.(x+1) + 2x^3.(x+1) + 2x^2.(x+1) + 2x.(x+1) + ( x+1 )
= ( x+1 )( x^5 + 2x^4 + 2x^3 + 2x^2 + 2x + 1 )
Tiếp tục phân tích bằng cách trên vì 1+2+2 = 2+2+1
= ( x+1)(x+1)(x^4 + x^3 + x^2 + x +1 )
= (x+1)^2 . ( x^4 + x^3 + x^2 + x + 1 )