Bài 2: Triển khai các đa thức sau
a. (x+y)2
b. (x-2y)2
c. (xy2+1).(xy2-1)
d. (x+y)2(x-y)2
Phân tích các đa thức sau thành nhân tử:
1, 2(x-1)3-(x-1)
2, y(x-2y)2+xy2(2y-x)
3, xy(x+y)-2x-y
4, xy(x-3y)-2x+6y
1) \(2\left(x-1\right)^3-\left(x-1\right)=\left(x-1\right)\left(2\left(x-1\right)^2-1\right)\)
2) \(y\left(x-2y\right)^2+xy^2\left(2y-x\right)=\left(2y-x\right)\left(2\left(2y-x\right)+1\right)=\left(2y-x\right)\left(4y-2x+1\right)\)
3) \(xy\left(x+y\right)-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\) (xem lại đề sửa -2x thành -x mới đúng)
4) \(xy\left(x-3y\right)-2x+6y=xy\left(x-3y\right)-2\left(x-3y\right)=\left(x-3y\right)\left(xy-2\right)\)
1,phân tích mỗi đa thức sau thành phân tử
a,(x+2y)2-(x-y)2
b,(x+1)3+(x-1)3
c,9x2-3x+2y-4y2
d,4x2-4xy+2x-y+y2
e,x3+3x2+3x+1-y3
g,x3-2x2y+xy2-4x
a) \(\left(x+2y\right)^2-\left(x-y\right)^2=\left(x+2y+x-y\right)\left(x+2y-x+y\right)\)
\(=\left(2x+y\right).3y\)
b) \(\left(x+1\right)^3+\left(x-1\right)^3\)
\(=\left(x+1+x-1\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]\)
\(=2x\left[\left(x+1\right)^2-\left(x^2-1\right)+\left(x-1\right)^2\right]\)
c) \(9x^2-3x+2y-4y^2\)
\(=9x^2-4y^2-3x+2y\)
\(=\left(3x-2y\right)\left(3x+2y\right)-\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left[3x+2y-1\right]\)
d) \(4x^2-4xy+2x-y+y^2\)
\(=4x^2-4xy+y^2+2x-y\)
\(=\left(2x-y\right)^2+2x-y\)
\(=\left(2x-y\right)\left(2x-y+1\right)\)
e) \(x^3+3x^2+3x+1-y^3\)
\(=\left(x+1\right)^3-y^3\)
\(=\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2\right]\)
g) \(x^3-2x^2y+xy^2-4x\)
\(=x\left(x^2-2xy+y^2\right)-4x\)
\(=x\left(x-y\right)^2-4x\)
\(=x\left[\left(x-y\right)^2-4\right]\)
\(=x\left(x-y+2\right)\left(x-y-2\right)\)
a) (x + 2y)² - (x - y)²
= (x + 2y - x + y)(x + 2y + x - y)
= 3y(2x + y)
b) (x + 1)³ + (x - 1)³
= (x + 1 + x - 1)[(x + 1)² - (x + 1)(x - 1) + (x - 1)²]
= 2x(x² + 2x + 1 - x² + 1 + x² - 2x + 1)
= 2x(x² + 3)
c) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) x³ + 3x² + 3x + 1 - y³
= (x³ + 3x² + 3x + 1) - y³
= (x + 1)³ - y³
= (x + 1 - y)[(x + 1)² + (x + 1)y + y²]
= (x - y + 1)(x² + 2x + 1 + xy + y + y²)
g) x³ - 2x²y + xy² - 4x
= x(x² - 2xy + y² - 4)
= x[(x² - 2xy + y²) - 4]
= x[(x - y)² - 2²]
= x(x - y - 2)(x - y + 2)
Phân tích đa thức thành nhân tử:
a) 4 ( 2 - x ) 2 + xy - 2y;
b) x ( x - y ) 3 - y ( y - x ) 2 - y 2 (x - y);
c) x 2 y - xy 2 - 3x + 3y;
d) x ( x + y ) 2 - y ( x + y ) 2 + xy - x 2
bài 2: rút gọn các biểu thức sau :
a,(3 - xy2)2 - (2 + xy2) 2
b, (x - y) (x2 + xy +y 2 )
c, ( x - 3 )3 + (2 - x )3
a) \(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)
\(=\left(3-xy^2+2+xy^2\right)\left(3-xy^2-2-xy^2\right)\)
\(=5.\left(-2xy^2\right)\)
\(=-10xy^2\)
b) \(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3-y^3\)
c) \(\left(x-3\right)^3+\left(2-x\right)^3\)
\(=x^3-3x^2.3+3x.3^2-3^3+2^3-3.2^2.x+3.2.x^2-x^3\)
\(=x^3-9x^2+27x-27+8-12x+6x^2-x^3\)
\(=\left(x^3-x^3\right)+\left(-9x^2+6x^2\right)+\left(27x-12x\right)+\left(-27+8\right)\)
\(=-3x^2+15x-19\)
Chứng minh các phân thức sau bằng nhau 2 ( x + 1 ) y - x y 2 = - 2 ( x + 1 ) 3 x ( x + 1 ) 2 y
Chứng minh các phân thức sau bằng nhau 2 ( x + 1 ) y - x y 2 = - 2 ( x + 1 ) 3 x ( x + 1 ) 2 y
tính giá trị của đa thức sau, biet x+y-2=0
A=x3-2x2-xy2+2xy+2y+2x-2
a, thu gọn đơn thức:1/9 xy.(-3x2 y)3
b, thu gọn rồi tính giá trị đa thức:A=1/3x2 y-xy2+2/3x2 y=1/2 xy+xy2+1 tại x=1,y=-1
a: \(=\dfrac{1}{9}xy\cdot\left(-27\right)x^6y^3=-3x^7y^4\)
b: \(A=\dfrac{1}{3}x^2y-xy^2+\dfrac{2}{3}x^2y+\dfrac{1}{2}xy+xy^2+1\)
=x^2y+1/2xy+1
Khi x=1 và y=-1 thì A=-1-1/2+1=-1/2
Khai triển các biểu thức sau
A = ( x + y + z ) ^2
B = ( x - y - z ) ^2
C = ( x - y + z ) ^2
D = ( x + 1 - 2y ) ^2
A=\(x^2+y^2+z^2+2xy+2yz+2xz\)
B=\(x^2+y^2+z^2-2xy+2yz-2xz\)
C=\(x^2+y^2+z^2-2xy-2yz+2xz\)
D=\(x^2+4y^2+1+2x-4y-4xy\)
TL:
\(A=x^2+y^2+z^2+2xy+2yz+2xz\)
\(B=x^2+y^2+z^2-2xy+2yz-2xz\)
\(C=x^2+y^2+z^2-2xy-2yz+2xz\)
\(D=x^2+1+4y^2+2x-4y+4xy\)
hc tốt
Bài 2:Phân tích đa thức thành nhân tử chung
a, 4(2-x)2+xy-2y
b, x(x-y)3-y(y-x)2-y2(x-y)
c, x2y-xy2-3x+3y
d, x(x+y)2-y(x+y2)+xy-x2
a) \(4\left(2-x\right)^2+xy-2y\)
\(=4\left(x-2\right)^2+\left(xy-2y\right)\)
\(=4\left(x-2\right)\left(x-2\right)+y\left(x-2\right)\)
\(=\left(x-2\right)\left(4x-8\right)+y\left(x-2\right)\)
\(=\left(x-2\right)\left(4x-8+x-2\right)\)
\(=\left(x-2\right)\left(5x-10\right)\)
\(=5\left(x-2\right)^2\)
a, \(=4\left(x-2\right)^2+y\left(x-2\right)=\left(x-2\right)\left(4x-8+y\right)\)
b, \(=x\left(x-y\right)^3-y\left(x-y\right)^2-y^2\left(x-y\right)=\left(x-y\right)\left[x\left(x-y\right)^2-y\left(x-y\right)-y^2\right]=\left(x-y\right)\left[x\left(x^2-2xy+y^2\right)-xy+y^2-y^2\right]=\left(x-y\right)\left(x^3-2x^2y+xy^2-xy\right)=x\left(x-y\right)\left(x^2-2xy+y^2-y\right)\)
c, \(=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\)
d, không phân tích được
c, x2y - xy2 - 3x + 3y
= xy(x-y) - 3(x-y)
= (x-y)(x-3)