Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thanh ngọc
Xem chi tiết
Bảo Duy Cute
5 tháng 6 2016 lúc 14:23

Viết A dưới dạng biểu thức không âm :

A=\(\frac{\left(2x^2-4x+2\right)+\left(x^2-4x+4\right)}{x^2-2x+1}=2+\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\) 

Vậy GTNN của A=2 khi và chỉ khi x=2

hoàng nguyễn
5 tháng 6 2016 lúc 14:29

Đặt x-1=y thì x=y+1.ta có :

A=\(\frac{3\left(y+1\right)^2-8\left(y+1\right)+6}{y^2}=\frac{3y^2-2y+1}{y^2}=3-\frac{2}{y}+\frac{1}{y^2}\) 

Lại đặt \(\frac{1}{y}=z\) thì 

A=3-2z+z2=(z-1)2+2\(\ge\) 2

Vậy GTNN của A=2 \(\Leftrightarrow\) z=1\(\Leftrightarrow\) y=1\(\frac{1}{x-1}=1\Leftrightarrow x=2\)

Hoàng Quang Kỳ
Xem chi tiết
Cô Hoàng Huyền
15 tháng 12 2017 lúc 17:09

Ta có \(\frac{3x^2+8x+6}{x^2+2x+1}=\frac{3x^2+6x+3+2x+2+1}{\left(x+1\right)^2}=\frac{3\left(x+1\right)^2+2\left(x+1\right)+1}{\left(x+1\right)^2}\)

\(=3+\frac{2}{x+1}+\frac{1}{\left(x+1\right)^2}\)

Đặt \(\frac{1}{x+1}=t\), biểu thức trở thành: \(t^2+2t+3=\left(t+1\right)^2+2\ge2\)

Vậy GTNN của phân thức là 2, khi t = -1 tức là x = -2.

hh hh
Xem chi tiết
alibaba nguyễn
16 tháng 1 2017 lúc 14:54

Ta có:

\(A=\frac{3x^2-8x+6}{x^2-2x+1}\)

\(\Leftrightarrow A\left(x^2-2x+1\right)=3x^2-8x+6\)

\(\Leftrightarrow\left(3-A\right)x^2+\left(2A-8\right)x+6-A=0\)

Đê pt theo nghiệm x có nghiệm thì

\(\Delta'=\left(A-4\right)^2-\left(3-A\right)\left(6-A\right)\ge0\)

\(\Leftrightarrow A-2\ge0\)

\(\Leftrightarrow A\ge2\)

Vậy GTNN là 2 khi x = 2

Phan Huy Toàn
29 tháng 7 2017 lúc 16:03

x=2

lời giải mk đang làm

Nguyễn Minh	Vũ
13 tháng 12 2021 lúc 11:12

bn giải cách lớp 8 đi

Khách vãng lai đã xóa
Trần Ronaldo
Xem chi tiết
Cậu chủ họ Lương
8 tháng 9 2019 lúc 20:46

A\(\frac{2x^2-4x+2+x^2-4x+4}{x^2-2x+1}=2+\left(\frac{x-2}{x-1}\right)^2\ge2\)

dấu = xảy ra x=2

chúc ban hk tốt

๖²⁴ʱんuリ イú❄✎﹏
6 tháng 10 2019 lúc 13:43

\(A=\frac{2x^2-4x+2+x^2-4x+4+4}{x^2-2x+1}\)

\(=2+\left(\frac{x-2}{x-1}\right)^2\ge2\)

Dấu ''='' xảy ra khi GTNN của A=2

Nguyễn Thanh Hà
Xem chi tiết
o0o I am a studious pers...
25 tháng 7 2018 lúc 21:50

I don't now

mik ko biết 

sorry 

......................

Nguyễn Thanh Hà
25 tháng 7 2018 lúc 21:56

Tìm GTNN của A = \(\frac{3x^2-8x+6}{x^2-2x+1}\)

Phạm Tuấn Đạt
25 tháng 7 2018 lúc 22:14

\(A=\frac{3x^2-8x+6}{x^2-2x+1}\)

\(A=\frac{3x^2-6x+1-2x+5}{x^2-2x+1}\)

\(A=3-\frac{2x-5}{\left(x-1\right)^2}\)

Để A đạt GTNN => \(\frac{2x-5}{\left(x-1\right)^2}\)phải lớn nhất

\(\Rightarrow2x-5\)đạt Max 

Bùi Đức Anh
Xem chi tiết
phạm văn tuấn
9 tháng 4 2018 lúc 16:55

gợi ý nha:

https://olm.vn/hoi-dap/question/1035789.html

k mik đi

@_@

Lik đó bạn:olm.vn/hoi-dap/question/1035789.html

_Guiltykamikk_
9 tháng 4 2018 lúc 19:12

\(A=\frac{3x^2-8x+6}{x^2-2x+1}\)

\(A=\frac{3x^2-8x+6}{\left(x-1\right)^2}\)

Đặt \(x-1=y\left(y\ne0\right)\)

\(\Rightarrow x=y+1\)

\(A=\frac{3\left(y+1\right)^2-8\left(y+1\right)+6}{y^2}\)

\(A=\frac{3\left(y^2+2y+1\right)-8y-8+6}{y^2}\)

\(A=\frac{3y^2+6y+3-8y-8+6}{y^2}\)

\(A=\frac{3y^2-2y+1}{y^2}\)

\(A=\frac{3y^2}{y^2}-\frac{2y}{y^2}+\frac{1}{y^2}\)

\(A=3-\frac{2}{y}+\frac{1}{y^2}\)

\(A=\left(\frac{1}{y^2}-\frac{2}{y}+1\right)+2\)

\(A=\left(\frac{1}{y}-1\right)^2+2\)

Mà \(\left(\frac{1}{y}-1\right)^2\ge0\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\frac{1}{y}-1=0\)

\(\Leftrightarrow\frac{1}{y}=1\)

\(\Leftrightarrow y=1\)

Mà : \(x=y+1\Rightarrow x=2\)

Vậy \(A_{Min}=2\Leftrightarrow x=2\)

Thành Bình
Xem chi tiết
bùi khánh toàn
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2022 lúc 21:46

\(S=\dfrac{3x^2+8x+6}{x^2+2x+1}=\dfrac{-2\left(x^2+2x+1\right)+x^2+4x+4}{x^2+2x+1}=-2+\left(\dfrac{x+2}{x+1}\right)^2\ge-2\)

\(S_{min}=-2\) khi \(x=-2\)

Nguyễn Minh	Vũ
Xem chi tiết
Darlingg🥝
13 tháng 12 2021 lúc 11:41

\(\frac{3x^2-8x+6}{x^2-2x+1}\)

=\(\frac{2x^2-x^2-4x-4x+2+4}{x^2-2x+1}\)

=\(\frac{\left(2x^2-4x+2\right)+\left(x^2-4x+4\right)}{x^2-2x+1}\)

=\(\frac{2\left(x^2-2x+1\right)+\left(x^2-4x+4\right)}{x^2-2x+1}\)

=\(2+\frac{x^2-4x+4}{\left(x-1\right)^2}\)

=\(2+\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\) 

Vì \(\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\)  với mọi x

<=>\(2+\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\) > 2 với mọi x

Dấu "=" xảy ra khi và chỉ khi x=-2 thì Min =2

Vậy Min=2

Khách vãng lai đã xóa