giải pt:
-8cos2x . sin2x . cos4x = \(\sqrt{2}\)
Giải phương trình: cos4x =\(3\sqrt{2}\) sin2x+2=0
giải các pt
a) \(cos^2x+sin2x-1=0\)
b) \(\sqrt{3}sin2x+\:cos^4x-sin^4x=\sqrt{2}\)
c) \(\:cos^2x-sin^2x=\sqrt{2}.sin\left(x+\frac{\pi}{4}\right)\)
d) \(4\left(sin^4x+cos^4x\right)+\sqrt{3}.sin4x=2\)
e) \(4sinx.cosx.cos2x+cos4x=\sqrt{2}\)
\(\text{a) }cos^2x+sin2x-1=0\\ \Leftrightarrow2sinx\cdot cosx-sin^2x=0\\ \Leftrightarrow sinx\left(2cosx-sinx\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=2cosx\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=0\\tanx=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=a\pi\\x=arctan\left(2\right)+b\pi\end{matrix}\right.\)
\(\text{b) }\sqrt{3}sin2x+cos^4x-sin^4x=\sqrt{2}\\ \Leftrightarrow\sqrt{3}sin2x+\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)=\sqrt{2}\\ \Leftrightarrow\frac{\sqrt{3}}{2}\cdot sin2x+\frac{1}{2}\cdot cos2x=\frac{\sqrt{2}}{2}\\ \Leftrightarrow cos\frac{\pi}{6}\cdot sin2x+sin\frac{\pi}{6}\cdot cos2x=\frac{\sqrt{2}}{2}\\ \Leftrightarrow cos\frac{\pi}{6}\cdot sin2x+sin\frac{\pi}{6}\cdot cos2x=\frac{\sqrt{2}}{2}\\ \Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=sin\frac{\pi}{4}\\ \\ \Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=\frac{\pi}{4}+a2\pi\\2x+\frac{\pi}{6}=\frac{3\pi}{4}+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{24}+a\pi\\x=\frac{7\pi}{24}+b\pi\end{matrix}\right.\)
\(c\text{) }cos^2x-sin^2x=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\\ \Leftrightarrow cos^2x-sin^2x=\sqrt{2}\left(sinx\cdot\frac{\sqrt{2}}{2}+cosx\cdot\frac{\sqrt{2}}{2}\right)\\ \Leftrightarrow\left(cosx-sinx\right)\left(sinx+cosx\right)=sinx+cosx\\ \Leftrightarrow\left[{}\begin{matrix}cosx-sinx=1\\sinx=-cosx\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}cos^2x+\left(cosx-1\right)^2=1\\tanx=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\\tanx=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+a\pi\\x=b2\pi\\x=\frac{3\pi}{4}=c\pi\end{matrix}\right.\)
\(d\text{) }4\left(sin^4x+cos^4x\right)+\sqrt{3}sin4x=2\\ \Leftrightarrow4\left(1-2sin^2x\cdot cos^2x\right)+\sqrt{3}sin4x=2\\ \Leftrightarrow-8sin^2x\cdot cos^2x+\sqrt{3}sin4x=-2\\ \Leftrightarrow-2sin^22x+\sqrt{3}sin4x=-2\\ \Leftrightarrow cos4x-1+\sqrt{3}sin4x=-2\\ \Leftrightarrow\frac{1}{2}cos4x+\frac{\sqrt{3}}{2}sin4x=-\frac{1}{2}\\ \Leftrightarrow sin\frac{\pi}{6}\cdot cos4x+cos\frac{\pi}{6}\cdot sin4x=-\frac{1}{2}\\ \Leftrightarrow sin\left(4x+\frac{\pi}{6}\right)=sin\frac{-\pi}{6}\\ \Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{6}=\frac{-\pi}{6}+a2\pi\\4x+\frac{\pi}{6}=\frac{7\pi}{6}+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-\pi}{12}+\frac{a\pi}{2}\\x=\frac{\pi}{4}+\frac{b\pi}{2}\end{matrix}\right.\)
\(e\text{) }4sinx\cdot cosx\cdot cos2x+cos4x=\sqrt{2}\\ \Leftrightarrow sin4x+cos4x=\sqrt{2}\\ \Leftrightarrow sin4x\cdot\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}cos4x=1\\ \Leftrightarrow sin4x\cdot cos\frac{\pi}{4}+cos4x\cdot sin\frac{\pi}{4}=1\\ \Leftrightarrow sin\left(4x+\frac{\pi}{4}\right)=1=sin\frac{\pi}{2}\\ \Leftrightarrow4x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\\ \Leftrightarrow x=\frac{\pi}{16}+\frac{k\pi}{2}\)
Giải phương trình sau : \(8\cos2x.\sin2x.\cos4x=\sqrt{2}\)
\(\Leftrightarrow4sin4x.cos4x=\sqrt{2}\)
\(\Leftrightarrow2sin8x=\sqrt{2}\)
\(\Leftrightarrow sin8x=\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}8x=\frac{\pi}{4}+k2\pi\\8x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{32}+\frac{k\pi}{4}\\x=\frac{3\pi}{32}+\frac{k\pi}{4}\end{matrix}\right.\)
Bài 1 Giải PT
a) sin3x - \(\sqrt{3}cos3x\) = 1
b) 3sin3x + \(\sqrt{3}cos9x\) = 1 + 4sin33x
c) \(\sqrt{3}cos4x\) + sin4x = 2
d) cos3x - sin2x = \(\sqrt{3}\)(cos3x - sin3x)
Bài 2: Cho PT 2m(sinx + cosx) = 2m2 + cosx - sinx +\(\frac{3}{2}\)
a) Giải PT với m= 1
b) Tìm m để PT có nghiệm
Có b nào gipus mk với cần gấp gấp :)
giải phương trình :(sin2x-4cos2x)(sin2x-2sinxcosx) = 2 cos4x
(sin2x - 4cos2x)(sin2x - 2sinx.cosx) = 2cos4x
⇔ (5sin2x - 4)(sin2x - sin2x) = 2cos4x
⇔ \(\left(\dfrac{5-5cos2x}{2}-4\right)\left(\dfrac{1-cos2x}{2}-sin2x\right)\)= 2cos4x
⇔ \(\dfrac{5-5cos2x-8}{2}.\dfrac{1-cos2x-2sin2x}{2}\) = 2cos4x
⇔ (5cos2x + 3)(cos2x + 2sin2x - 1) = 8cos4x
⇔ 5cos22x + 5cos2x.sin2x + 3cos2x + 6sin2x - 3 = 8cos4x
⇔ 5.\(\dfrac{1+cos4x}{2}\) + \(\dfrac{5}{2}sin4x\) + 3cos2x + 6sin2x - 3 = 8cos4x
⇔ \(\dfrac{5}{2}cos4x+\dfrac{5}{2}sin4x+3cos2x+6sin2x-\dfrac{1}{2}\) = 8cos4x
⇔ 5cos4x + 5sin4x + 6cos2x + 12sin2x - 1 = 16cos4x
VP = 16cos4x = 16 . \(\dfrac{\left(1+cos2x\right)^2}{4}\) = 4. (1 + cos2x)2
VP = 4 . (1 + 2cos2x + cos22x)
VP = 4 + 8cos2x + 4 . \(\dfrac{1+cos4x}{2}\)
VP = 6 + 8cos2x+ 2cos4x
Vậy 3cos4x + 5sin4x - 2cos2x + 12sin2x - 7 = 0
Giải phương trình: \(\sin x+\cos x\sin2x+\sqrt{3}\cos3x=2\left(\cos4x+\sin^3x\right)\)
\(\Leftrightarrow sinx\left(1-2sin^2x\right)+cosx.sin2x+\sqrt{3}cos3x=2cos4x\)
\(\Leftrightarrow sinx.cos2x+cosx.sin2x+\sqrt{3}cos3x=2cos4x\)
\(\Leftrightarrow sin3x+\sqrt{3}cos3x=2cos4x\)
\(\Leftrightarrow\frac{1}{2}sin3x+\frac{\sqrt{3}}{3}cos3x=cos4x\)
\(\Leftrightarrow sin\left(3x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{2}-4x\right)\)
\(\Leftrightarrow...\)
Giải phương trình: \(\left(\frac{\cos4x+\sin2x}{\cos3x+\sin3x}\right)^2=2\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)+3\)
ĐKXĐ:...
Biến đổi đoạn trong ngoặc trước cho đỡ rối:
\(cos4x+sin2x=cos\left(3x+x\right)+sin\left(3x-x\right)\)
\(=cos3x.cosx-sin3x.sinx+sin3x.cosx-cos3x.sinx\)
\(=cosx\left(cos3x+sin3x\right)-sinx\left(cos3x+sin3x\right)\)
\(=\left(cosx-sinx\right)\left(cos3x+sin3x\right)\)
Thay vào phương trình:
\(\left(cosx-sinx\right)^2=2\left(sinx+cosx\right)+3\)
\(\Leftrightarrow1-2sinx.cosx=2\left(sinx+cosx\right)+3\)
Đặt \(sinx+cosx=a\Rightarrow-2sinx.cosx=1-a^2\)
\(2-a^2=2a+3\Rightarrow a=-1\Rightarrow sinx+cosx=-1\Rightarrow...\)
Giải phương trình:
\(3-4\cos2x=\frac{3}{2}.\cos4x+\sqrt{3}\sin2x\left(4-3\cos2x\right)\)
Giai các pt sau
1. \(\sqrt{3}\cos5x-2\sin3x.\cos2x-\sin x=0\)
4. \(\sin3x+\cos3x-\sin x+\cos x=\sqrt{2}\cos2x\)
6. \(\sin x+\cos x.\sin2x+\sqrt{3}\cos3x=2\left(\cos4x+\sin x^3\right)\)