tìm gtnn của biểu thức a^2 - 2ab + 3b^2 - 2a + 2009,5
Cho a,b dương thỏa a + b = 2
Tìm GTNN của biểu thức 2a^2 + 3b^2 + 3ab
Ta có : \(a+b=2\)
\(\Rightarrow\)\(a = 2 -b\)
\(A = 2a^2 +3b^2 +3ab\)
\(A = 2a^2 + 3b. (a+b)\)
\(A = 2. (2-b)^2+3b. (2-b+b)\)
\(A = 2. ( b^2 -4b+4)+6b\)
\(A = 2b^2 -8b+8+6b\)
\(A = 2b^2 -2b+8\)
\(A = 2. ( b ^2 -b+4)\)
\(A=2. (b^2 -2.b.{1\over2}+({1\over2})^2-({1\over2})^2+4)\)
\(A = 2. [ (b -{1\over2})^2-{15\over4}]\)
\(A =2. (b-{1\over2})^2 + {15\over2}\)\(\ge\)\({15\over2}\)
\(Min A ={15\over2}\)\(\Leftrightarrow\)\(a = {3\over2};b={1\over2}\)
Ta có : a+b=2→b=2−a
→P=2a2+3b2+3ab=2a2+3b(a+b)=2a2+3b.2=2a2+6b=2a2+6(2−a)=2a2−6a+12
→P=2(a2−3a)+12
→P=2(a2−2a.32+94)+152
→P=2(a−32)2+152≥152
→GTNNP=152
Dấu = xảy ra khi a−32=0
Thăm nhà mình nha:tthnew's blog. Thanks mn!
Cách 2:
Gọi biểu thức trên là A. Dự đoán \(Min=\frac{15}{2}\).
Xét hiệu \(A-\frac{15}{2}=\frac{\left(a-3b\right)^2}{8}\ge0\)
Đẳng thức xảy ra khi \(a=\frac{3}{2};b=\frac{1}{2}\)
tìm giá trị của a và b để biểu thức đạt GTNN? và bằng bao nhiêu?
\(P=a^2+2ab+6b^2-2a-32b+2050\)
cho 2 số a,b thỏa 2a+b=2. Tìm GTNN của biểu thức:
P= 3a2 +2ab + b2
\(2a+b=2\Rightarrow b=2-2a\)
\(\Rightarrow P=3a^2+b\left(2a+b\right)=3a^2+2b=3a^2+2\left(2-2a\right)=3a^2-4a+4=3\left(a-\dfrac{2}{3}\right)^2+\dfrac{8}{3}\ge\dfrac{8}{3}\)
\(p_{min}=\dfrac{8}{3}\) khi \(a=\dfrac{2}{3}\)
Cho các số thực a,b,c dương thỏa mãn a+b+c=5 Tìm GTNN CỦA BIỂU THỨC 2A+2AB+ABC
Biểu thức này không tồn tại cả GTLN lẫn GTNN (chỉ tồn tại nếu a;b;c không âm)
Cho hai số thực a,b thay đổi thỏa mãn 4a+b-1-(1/2)3a+b-2+5a+3b-4=0. Tìm GTNN của biểu thức P=a2+2ab+b2
\(4^{a+b-1}-\left(\frac{1}{2}\right)^{3a+b-2}+5a+3b-4=0\)
\(\Leftrightarrow2^{2a+2b-2}-2^{-3a-b+2}+5a+3b-4=0\)
\(\Leftrightarrow2^{2a+2b-2}+2b+2b-2=2^{-3a-b+2}-3a-b+2\)(1)
Xét hàm \(f\left(t\right)=2^t+t\)
\(f'\left(t\right)=2^t.ln\left(2\right)+1>0,\forall t\inℝ\)
suy ra \(f\left(t\right)\)đồng biến trên \(ℝ\).
(1) suy ra \(2a+2b-2=-3a-b+2\Leftrightarrow b=\frac{4-5a}{3}\)
\(P=a^2+2ab+b^2=\left(a+b\right)^2=\left(a+\frac{4-5a}{3}\right)^2\ge0\)
Dấu \(=\)khi \(a=2\).
Vậy \(minP=0\)khi \(a=2,b=-2\)
Cho \(a,b,c\ge0\) thỏa mãn
\(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Tìm GTNN của biểu thức
\(P=\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ab+3b^2}\)
\(P=\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ab+3b^2}\)
\(=\sqrt{2\left(a+b\right)^2+\left(a-b\right)^2}+\sqrt{2\left(b+c\right)^2+\left(b-c\right)^2}+\sqrt{2\left(c+a\right)^2+\left(c-a\right)^2}\)
\(\ge2\sqrt{2}\left(a+b+c\right)\ge\sqrt{2}\left(2\sqrt{a}+2\sqrt{b}+2\sqrt{c}-3\right)=6\sqrt{2}\)
Vậy GTNN của P là \(6\sqrt{2}\Leftrightarrow a=b=c=1\)
Cho hai số thực dương a,b thỏa mãn \(a^2+b^2=1\)
Tìm GTNN và GTLN của biểu thức \(A=\frac{3a^2+3b^2+14ab}{1+2ab+2b^2}\)
Cho a > b > 0 và \(a^2-6b^2=-ab\) Gía trị của biểu thức \(M=\frac{2ab}{2a^2-3b^2}\)
a^2-6b^2=-ab
a^2+ab-6b^2=0
a^2+3ab-2ab-6b^2=0
a(a+3b)-2b(a+3b)=0
(a+3b)(a-2b)=0
suy ra a+3b=0 hoặc a-2b=0
ta có a>b>0 nên a+3b=0 sẽ ko xảy ra
suy ra a-2b=0 ,a=2b
thế vào đa thức M ta có M=2.2b.b/2.(2b)^2-3b^2
M=4b^2/5b^2=4/5
Cho hai số thỏa mãn hệ thức 2a + 3b = 5. Tìm GTNN của B ,biết B = 2a^2 + 3b^2. ( Có dùng đến bất đẳng thức bunhia copxki)