Tính nhanh
2062-36
Tìm x biết
(x-4)22-(12x+x2)2=6
1. Phân tích các đa thức sau thành phân tử
8xy2+24x2y-32x3y2
x2-16x-y2+64
2. Tìm x biết
(x-4)22-(12x+x2)=6
Bài 1:
a) \(8xy^2+24x^2y-32x^3y^2=8xy\left(y+3x-4x^2y\right)\)
b) \(x^2-16x-y^2+64=\left(x-8\right)^2-y^2=\left(x-8-y\right)\left(x-8+y\right)\)
Bài 2:
\(\left(x-4\right)^2-\left(12x+x^2\right)=6\)
\(\Rightarrow x^2-8x+16-12x-x^2=6\)
\(\Rightarrow20x=10\Rightarrow x=\dfrac{1}{2}\)
\(1,\\ =8xy\left(y+3x-4x^2y\right)\\ =\left(x-8\right)^2-y^2=\left(x-y-8\right)\left(x+y-8\right)\)
\(2,\Leftrightarrow x^2-8x+16-12x-x^2=6\\ \Leftrightarrow-20x=-10\\ \Leftrightarrow x=2\)
Tìm x biết:
1,
a,3x(x+1) - 2x(x+2) = -x-1
b,2x(x-2020) - x+2020 = 0
c,(x-4)2 - 36 = 0
d,x2 + 8x - 16 = 0
e,x(x+6) - 7x - 42 = 0
f,25x2 - 16 = 0
2,
a,3x3 - 12x = 0
b,x2 + 3x - 10 = 0
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Tìm x biết rằng:
a) ( x 2 + 2x + 4)(2 - x) + x(x - 3)(x + 4) - x 2 + 24 = 0;
b) x 2 + 3 ( 5 − 6 x ) + ( 12 x − 2 ) x 4 + 3 = 0 .
GIẢI CÁC PT SAU:
x2 - 6x + 9=\(4\sqrt{x^2-6x+6}\)
x2 - x + 8 - \(4\sqrt{x^2-x+4}=0\)
x2 + \(\sqrt{4x^2-12x+44}=3x+4\)
Tìm số tự nhiên x biết:
3^7:(x-22)=3^2x3^3
2.12^x=(4^2+6)^2-(5^3-3^5:3^2)x2
giúp mik với nhớ viết đầy đủ các bước tính giúp mik nhé
Biết \(x^2-2x-1=0\). Tính biểu thức \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
Ta có : \(x^2-2x-1=0
\)
\(\Leftrightarrow \)\((x-1)^2=2\)
\(\Leftrightarrow
\)\(\left[\begin{array}{}
x-1=\sqrt{2}\\
x-1=-\sqrt{2}
\end{array} \right.\)
Đặt P = \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
=\(\dfrac{(x^6-2x^5-x^4)-(4x^5-8x^4-4x^3)+(5x^4-10x^3-5x^2)-(2x^3-4x^2-2x)+(x^2-2x-1)+2016}
{(x^6-2x^5-x^4)+(2x^5-4x^4-2x^3)+(5x^4-10x^3-5x^2)+(4x^3-8x^2-4x)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{x^4(x^2-2x-1)-4x^3(x^2-2x-1)+5x^2(x^2-2x-1)-2x(x^2-2x-1)+(x^2-2x-1)+2016}
{x^4(x^2-2x-1)+2x^3(x^2-2x-1)+5x^2(x^2-2x-1)+4x(x^2-2x-1)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{2016}{12x + 2016}\)
=\(\dfrac{2016}{12(x+1)+2004}\)
=\(\dfrac{168}{x+1+167}\)
=\(\left[\begin{array}{}
\dfrac{168}{\sqrt{2}+167}\\
\dfrac{168}{-\sqrt{2}+167}
\end{array} \right.\)
Chú thích: Hình như mẫu là \(-6x\) chứ không phải \(6x
\) bạn ạ. Hay là mình phân tích sai thì cho mình xin lỗi nhé.
bài 1 giải các bất phương trình sau
a, -x2 +5x-6 ≥ 0
b, x2-12x +36≤0
c, -2x2 +4x-2≤0
d, x2 -2|x-3| +3x ≥ 0
e, x-|x+3| -10 ≤0
bài 2 xét dấu các biểu thức sau
a,<-x2+x-1> <6x2 -5x+1>
b, x2-x-2/ -x2+3x+4
c, x2-5x +2
d, x-< x2-x+6 /-x2 +3x+4 >
Bài 1:
a: \(\Leftrightarrow x^2-5x+6< =0\)
=>(x-2)(x-3)<=0
=>2<=x<=3
b: \(\Leftrightarrow\left(x-6\right)^2< =0\)
=>x=6
c: \(\Leftrightarrow x^2-2x+1>=0\)
\(\Leftrightarrow\left(x-1\right)^2>=0\)
hay \(x\in R\)
4)Tinh GTBT
a)x^3 + 12x^2 + 48x + 64 khi x=6
b)x^3 - 6x^2 + 12x - 8 khi x=22
5)Tim x
a) (x+9)^3 = 27
b)8 - 12x - x^3 + 6x^2 = -64
Bài 4:
a, \(x^3+12x^2+48x+64=x^3+4x^2+8x^2+32x+16x+64\)
\(=x^2.\left(x+4\right)+8x.\left(x+4\right)+16.\left(x+4\right)\)
\(=\left(x+4\right).\left(x^2+8x+16\right)=\left(x+4\right).\left(x^2+4x+4x+16\right)\)
\(=\left(x+4\right).\left(x+4\right)^2=\left(x+4\right)^3\)(1)
Thay \(x=6\) vào (1) ta được:
\(\left(6+4\right)^3=10^3=1000\)
Vậy...........
b, \(x^3-6x^2+12x-8=x^3-2x^2-4x^2+8x+4x-8\)
\(=x^2.\left(x-2\right)-4x.\left(x-2\right)+4.\left(x-2\right)\)
\(=\left(x-2\right).\left(x^2-4x+4\right)=\left(x-2\right).\left(x^2-2x-2x+4\right)\)
\(=\left(x-2\right).\left(x-2\right)^2=\left(x-2\right)^3\)(2)
Thay \(x=22\) vào (2) ta được:
\(\left(22-2\right)^3=20^3=8000\)
Vậy.............
Chúc bạn học tốt!!!
Bài 2:
a, \(\left(x+9\right)^3=27=3^3\)
\(\Rightarrow x+9=3\Rightarrow x=-6\)
Vậy.........
b, \(8-12x-x^3+6x^2=-64\)
\(\Rightarrow-\left(x^3-6x^2+12x-8\right)=-64\)
\(\Rightarrow x^3-2x^2-4x^2+8x+4x-8=64\)
\(\Rightarrow x^2.\left(x-2\right)-4x.\left(x-2\right)+4.\left(x-2\right)=64\)
\(\Rightarrow\left(x-2\right).\left(x^2-4x+4\right)=64\)
\(\Rightarrow\left(x-2\right).\left(x^2-2x-2x+4\right)=64\)
\(\Rightarrow\left(x-2\right).\left(x-2\right)^2=64\)
\(\Rightarrow\left(x-2\right)^3=4^3\Rightarrow x-2=4\Rightarrow x=6\)
Vậy............
Chúc bạn học tốt!!!
4. Tính giá trị biểu thức
a) x3 + 12x2 + 48x + 64 khi x = 6
Ta có:
x3 + 12x2 + 48x + 64 =
= (x3 + 64) + (12x2 + 48x)
= (x3 + 43) + 12x(x + 4)
= (x + 4)(x2 - 4x + 42) + 12x(x + 4)
= (x + 4)(x2 - 4x + 16 +12x)
= (x + 4)(x2 + 8x + 16)
= (x + 4)(x + 4)2
= (x + 4)3
Thế x = 6 vào biểu thức vừa tìm, ta được:
(x + 4)3 = (6 + 4)3 = 103 = 1000
Vậy 1000 là giá trị của biểu thức x3 + 12x2 + 48x + 64 khi x = 6.
b) x3 - 6x2 + 12x - 8 khi x = 22
Ta có:
x3 - 6x2 + 12x - 8 =
= (x3 - 8) - (6x2 - 12x)
= (x3 - 23) - 6x(x - 2)
= (x - 2)(x2 + 2x + 22) - 6x(x - 2)
= (x - 2)(x2 + 2x + 4 - 6x)
= (x - 2)(x2 - 4x + 4)
= (x - 2)(x - 2)2
= (x - 2)3
Thế x = 22 vào biểu thức vừa tìm, ta được:
(x - 2)3 = (22 - 2)3 = 203 = 8000
Vậy 8000 là giá trị của biểu thức x3 - 6x2 + 12x - 8 khi x = 22.
5. Tìm x a) (x + 9)3 = 27 \(\Leftrightarrow\) (x + 9)3 = 33 \(\Leftrightarrow\) x + 9 = 3 \(\Leftrightarrow\) x = - 6 Vậy x = -6 b) 8 - 12x - x3 + 6x2 = -64 \(\Leftrightarrow\) (8 - x3) - (12x - 6x2) = -64 \(\Leftrightarrow\) (23 - x3) - 6x(2 - x) = -64 \(\Leftrightarrow\) (2 - x)(22 + 2x + x2) - 6x(2 - x) = -64 \(\Leftrightarrow\) (2 - x)(4 + 2x + x2 - 6x) = -64 \(\Leftrightarrow\) (2 - x)(x2 - 4x + 4) = -64 \(\Leftrightarrow\) -(x - 2)(x - 2)2 = -64 \(\Leftrightarrow\) -(x - 2)3 = -43 \(\Leftrightarrow\) x - 2 = 4 \(\Leftrightarrow\) x = 6 Vậy x = 6
Giải các phương trình sau:
a, (9x2 - 4)(x + 1) = (3x +2)(x2 - 1)
b, (x - 1)2 - 1 + x2 = (1 - x)(x + 3)
c, (x2 - 1)(x + 2)(x - 3) = (x - 1)(x2 - 4)(x + 5)
d, x4 + x3 + x + 1 = 0
e, x3 - 7x + 6 = 0
f, x4 - 4x3 + 12x - 9 = 0
g, x5- 5x3 + 4x = 0
h, x4 - 4x3 + 3x2 + 4x - 4 = 0
a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)
=> x=-1
với \(3x^2+x-2=0\)
ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)
Vậy ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)
b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)
\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)
\(\Leftrightarrow3x^2=3\)
hay \(x\in\left\{1;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)
hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)