Tìm giá trị lớn nhất của hàm số :
y= \(\sqrt{1+\frac{1}{2}cos^2x}+\frac{1}{2}\sqrt{5+2sin^2x}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
1,\(y=5-3cosx\)
2,\(y=3cos^2x-2cosx+2\)
3,\(y=cos^2x+2cos2x\)
4,\(y=\sqrt{5-2sin^2x.cos^2x}\)
5,\(y=cos2x-cos\left(2x-\dfrac{\pi}{3}\right)\)
6,\(y=\sqrt{3}sinx-cosx-2\)
7,\(y=2cos^2x-sin2x+5\)
8,\(y=2sin^2x-sin2x+10\)
9,\(y=sin^6x+cos^6x\)
tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=\sqrt{5\sin^2x+1}+\sqrt{5\cos^2x+1}\) ?
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) \(y=f\left(x\right)=\dfrac{4}{\sqrt{5-2\cos^2x\sin^2x}}\)
b)\(y=f\left(x\right)=3\sin^2x+5\cos^2x-4\cos2x-2\)
c)\(y=f\left(x\right)=\sin^6x+\cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
Bài 1 Tìm giá trị lớn nhất , giá trị nhỏ nhất ( nếu có ) của hàm số sau :
6 , \(y=cos^2x+2sinx+2\)
7 , \(y=sin^4-2cos^2x+1\)
8 , \(y=\frac{1+4cos^2x}{3}\)
9 , \(y=\sqrt{1+sin2x}\)
10 , \(y=3-4sin^2x.cos^2x\)
12 , \(y=8+\frac{1}{2}sinx.cosx\)
13 \(y=\frac{1+4sin^2x}{3}\)
15 , \(y=\sqrt{1-sin\left(x^2\right)}-1\)
16 , \(y=2cos\left(x+\frac{\pi}{3}\right)+3\)
17 , \(y=\sqrt{1-cosx}\)
19 , \(y=\sqrt{5-2sin^2xcos^2x}\)
21 , \(y=2sin^2x-cos2x\)
23 , \(y=\frac{2}{1+tan^2x}\)
24 , \(y=\frac{1}{cosx+1}\)
6.
\(y=1-sin^2x+2sinx+2=-sin^2x+2sinx+3\)
\(y=-\left(sinx-1\right)^2+4\le4\)
\(y_{max}=4\) khi \(sinx=1\)
\(y=\left(sinx+1\right)\left(3-sinx\right)\ge0\)
\(y_{min}=0\) khi \(sinx=-1\)
7.
\(y=sin^4x-2\left(1-sin^2x\right)+1=sin^4x+2sin^2x-1\)
Do \(0\le sin^2x\le1\Rightarrow-1\le y\le2\)
\(y_{min}=-1\) khi \(sin^2x=0\)
\(y_{max}=2\) khi \(sin^2x=1\)
8.
\(y=\frac{1}{3}+\frac{4}{3}cos^2x\)
Do \(0\le cos^2x\le1\Rightarrow\frac{1}{3}\le y\le\frac{5}{3}\)
\(y_{min}=\frac{1}{3}\) khi \(cos^2x=0\)
\(y_{max}=\frac{5}{3}\) khi \(cos^2x=1\)
9.
\(-1\le sin2x\le1\Rightarrow0\le1+sin2x\le2\)
\(\Rightarrow0\le y\le\sqrt{2}\)
\(y_{min}=0\) khi \(sin2x=-1\)
\(y_{max}=\sqrt{2}\) khi \(sin2x=1\)
10.
\(y=3-\left(2sinx.cosx\right)^2=3-sin^22x\)
Do \(0\le sin^22x\le1\Rightarrow2\le y\le3\)
\(y_{min}=2\) khi \(sin^22x=1\)
\(y_{max}=3\) khi \(sin2x=0\)
12.
\(y=8+\frac{1}{4}\left(2sinx.cosx\right)=8+\frac{1}{4}sin2x\)
Do \(-1\le sin2x\le1\Rightarrow\frac{31}{4}\le y\le\frac{33}{4}\)
\(y_{min}=\frac{31}{4}\) khi \(sin2x=-1\)
\(y_{max}=\frac{33}{4}\) khi \(sin2x=1\)
13.
Về bản chất giống hệt câu 13, chỉ cần thay chữ sin bằng chữ cos
Tìm giá trị lớn nhất của hàm số \(y=\frac{\sqrt{x+1}+2x}{x}\)
cho x,y,z là ba số nguyên dương và Q=\(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\). tìm giá trị nhỏ nhất của Q
Đật 3 cái mẫu bên VT lần lượt là x,y,z rồi áp dụng C-S dạng engel
Cho x,y,z là ba số nguyên dương và Q=\(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\). Tìm giá trị nhỏ nhất của Q?
Để dễ nhìn ta đặt \(\hept{\begin{cases}\sqrt{2x-3}=a\\\sqrt{y-2}=b\\\sqrt{3z-1}=c\end{cases}\left(a,b,c\ge0\right)}\)
Vậy BĐT đầu tương đương \(T=\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c\)
Áp dụng BĐT C-S dạng Engel ta có:
\(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}=\frac{1^2}{a}+\frac{2^2}{b}+\frac{4^2}{c}\ge\frac{\left(1+2+4\right)^2}{a+b+c}=\frac{49}{a+b+c}\)
Tiếp tục dùng AM-GM ta có: \(VT\ge\frac{49}{a+b+c}+\left(a+b+c\right)\ge2\sqrt{\frac{49}{a+b+c}\cdot\left(a+b+c\right)}=2\sqrt{49}=14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=1\\b=2\\c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}\)
nhìn qua thì chắc AM-GM+Cauchy-schwarz chắc thế :)
Tìm giá trị max, min của các hàm số sau:
1, y= 2 - \(\sin\left(\dfrac{3\pi}{2}+x\right)\cos\left(\dfrac{\pi}{2}+x\right)\)
2, y= \(\sqrt{5-2\sin^2x.\cos^2x}\)
1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)
\(y=2-\left(-cosx\right).\left(-sinx\right)\)
y = 2 - sinx.cosx
y = \(2-\dfrac{1}{2}sin2x\)
Max = 2 + \(\dfrac{1}{2}\) = 2,5
Min = \(2-\dfrac{1}{2}\) = 1,5
2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)
Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)
Max = \(\sqrt{5}\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = 1 - 8sin^2x cos^2x + 2 sin^4 2x
Đặt \(sin^24x=t\left(t\in\left[0;1\right]\right)\)
\(y=1-8sin^22x.cos^22x+2sin^42x\)
\(=1-2sin^24x+2sin^42x\)
\(\Rightarrow y=f\left(t\right)=1-2t+2t^2\)
\(y_{min}=min\left\{f\left(0\right);f\left(1\right);f\left(\dfrac{1}{2}\right)\right\}=\dfrac{1}{2}\)
\(y_{max}=max\left\{f\left(0\right);f\left(1\right);f\left(\dfrac{1}{2}\right)\right\}=1\)