Chứng minh
A=1/3.4+1/4.5+...+1/50.51
A=1.2-2.3+3.4-4.5+...+49.50-50.51
A=2(1-3)+4(5-3)+ 6(5-7)+...+50(49-57)
A=-4-8-12-...-100 = -(4+8+12+...+100) (tính tổng cấp số cộng)
Tính: 1.2+2.3+3.4+4.5+.....+50.51
Ta có: 3S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + .....+ 50.51.(52 -49)
= 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 -2.3.4 + .....+ 50.51.52 - 49.50.51
3S = 50.51.52
S = 50.17.52 =44200
D = 5/2.3 - 7/3.4 + 9/4.5 - 11/5.6 + ... + 101/50.51 + 102/51/52
Sửa đề: -103/51*52
\(D=\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{50}+\dfrac{1}{51}-\dfrac{1}{51}-\dfrac{1}{52}\)
=1/2-1/52
=26/52-1/52=25/52
Tính nhanh:
A=15.16+16.17+17.18+...+29.30
T=27.29+29.31+31.33+...+57.59
S=3.4+4.5+...+50.51
Phúc nè tui hỏi chơi thui đc ko? Nhưng mà tui Cần nó để làm một số chuyện
a'15.16.17-14.15.16+16.17.18-....-28.29.30
=>4A=28.29.30-14.15.16=21000=>a=7000
bc,làm tương tự
a.(a+1)=a(a+1)(a+2)---(a-1)a(a+1)
chứng minh rằng 1/1.2 + 1/2.3 + 1/3.4+ 1/4.5+ ...+1/49.50 <1
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\) (đpcm)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
\(\Rightarrow\) Quy đồng phân số và 1 là : \(\frac{49}{50}\) và \(1\)
Giữ nguyên phân số \(\frac{49}{50}\)
Ta có : \(\frac{1}{1}=\frac{1.50}{1.50}=\frac{50}{50}\)
\(\Rightarrow\frac{49}{50}< \frac{50}{50}\left(đpcm\right)\)
Chứng minh rằng: 1/3.4+1/4.5+...+1/19.20<1/2. có lời giải chi tiết
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{3}-\dfrac{1}{20}=\dfrac{17}{60}< \dfrac{1}{2}\)
\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{19.20}< \dfrac{1}{2}\)
=> \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}< \dfrac{1}{2}\)
=> \(\dfrac{1}{3}-\dfrac{1}{20}< \dfrac{1}{2}\)
\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+.....+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=\dfrac{1}{3}-\dfrac{1}{20}=\dfrac{17}{60}\)
mà \(\dfrac{17}{60}< \dfrac{1}{2}\)
\(=>\dfrac{1}{3.4}+\dfrac{1}{4.5}+.....+\dfrac{1}{19.20}< \dfrac{1}{2}\)
tính tổng:
A=1/1.2+1/2.3+1/3.4+......+1/49.50+1/50.51
Ta có:A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+......+\dfrac{1}{49.50}+\dfrac{1}{50.51}\)
A=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.......+\dfrac{1}{49}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{51}\)
A=1-\(\dfrac{1}{51}=\dfrac{50}{51}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}+\dfrac{1}{50.51}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{51}\)
\(A=\dfrac{1}{1}-\dfrac{1}{51}\)
\(A=\dfrac{50}{51}\)
A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}+\dfrac{1}{50.51}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{51}\)
= \(1-\dfrac{1}{51}\)
= \(\dfrac{50}{51}\)
Chứng minh rằng:
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{49\cdot50}\\ =1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{49}+\dfrac{1}{50}\)
Cho B = \(\dfrac{1}{1.2}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{4.5}\)+ ... + \(\dfrac{1}{99.100}\)
Chứng minh \(\dfrac{7}{12}\)<B<\(\dfrac{5}{6}\)
Ta có : \(B\text{=}\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{99.100}\)
\(B\text{=}\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(B\text{=}\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{100}\)
\(B\text{=}\dfrac{247}{300}\)
Ta có : \(\dfrac{7}{12}\text{=}\dfrac{175}{300};\dfrac{5}{6}\text{=}\dfrac{250}{300}\)
Vì : \(\dfrac{175}{300}< \dfrac{247}{300}< \dfrac{250}{300}\)
\(\Rightarrowđpcm\)