so sánh 2.3 mũ 4 và 5 mũ 3
so sánh a, 2 mũ 6 và 6 mũ 2
b)3 mũ 4 và 4 mũ 3
c) 5 mũ 4 và 4 mũ 5
Ta có:
\(2^6=\left(2^3\right)^2=8^2\)\(=64\)
\(6^2=36\)
Vì \(8^2>6^2\)
⇒\(2^6>6^2\)
\(a,2^6=64\)
\(6^2=36\)
Vì \(64>36\) ⇒ \(2^6>6^2\)
\(b,3^4=81\)
\(4^3=64\)
Vì \(81>64\) ⇒ \(3^4>4^3\)
\(c,5^4=625\)
\(4^5=1024\)
Vì \(625< 1024\) ⇒ \(5^4< 4^5\)
Bài 5 :
a) Chứng minh rằng : 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/199.200/ 1/101 + 1/102 + 1/103 + ... + 1/200 = 1
b) So sánh A = 1 mũ 2/1.2 x 2 mũ 2/2.3 x 3 mũ 2/3.4 x 99 mũ 2/99.100 x 100 mũ 2/100.101 và B = 2 mũ 2/1.3 x 3 mũ 2/2.4 x 4 mũ 2/3.5
x .... x 59 mũ 2/58.60
Chỗ 4 mũ 2/3.5 x ... x 59 mũ 2/58.60 nha
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
1,So sánh
a, 0 mũ 2002 và 0 mũ 2023
b,2022 mũ 0 và 2023 mũ 0
c, 54 mũ 9 và 55 mũ 10
d,(4 + 5) mũ 3 và 4 mũ 2 + 5 mũ 2
đ,9 mũ 2 - 3 mũ 2 và (9-3)mũ 2
Bài 2:Tính giá trị biểu thức
a, 3 mũ 2 x 4 mũ 3 - 3 mũ 2 + 333
b, 5 x 4 mũ 3 + 24 x 5 + 41 mũ 0
c, 2 mũ 3 x 4 mũ 2 + 3 mũ 2 x 5 - 40 x 1 mũ 2023
Giúp mình với,mình đang cần !!
Bài 1:
a) 02002 < 02023
b) 20220 = 20230
c) 549 < 5510
d) ( 4 + 5 )3 > 42 + 52
đ) 92 - 32 > ( 9 - 3 )2
Bài 2:
a) 32 x 43 - 32 + 333
= 9 x 64 - 9 + 333
= 576 - 9 + 333
= 567 + 333
= 900
b) 5 x 43 + 24 x 5 + 410
= 5 x 64 + 24 x 5 + 1
= 5 x ( 64 + 24 ) + 1
= 5 x 88 + 1
= 440 + 1
= 441
c) 23 x 42 + 32 x 5 - 40 x 12023
= 8 x 16 + 9 x 5 - 40 x 1
= 128 + 45 - 40
= 133
Bài 1 :
a) \(0^{2002}=0;0^{2023}=0\Rightarrow0^{2002}=0^{2023}\)
b) \(2022^0=1;2023^0=1\Rightarrow2022^0=2023^0\)
c) \(54^9< 55^9;55^9< 55^{10}\Rightarrow54^9< 55^{10}\)
d) \(\left(4+5\right)^3>\left(4+5\right)^2;\left(4+5\right)^2>4^2+5^2\Rightarrow\left(4+5\right)^3>4^2+5^2\)
đ) \(9^2-3^2=81-9=82;\left(9-3\right)^2=6^2=36\Rightarrow9^2-3^2>\left(9-3\right)^2\)
Bài 2 :
a) \(3^2.4^3-3^2+333=3^2\left(4^3-1\right)+9.37=9.63+9.37=9\left(63+37\right)=9.100=900\)
b) \(5.4^3+24.5+41^0=20.4^2+20.6+1=20\left(16+6\right)+1=20.22+1=441\)
c) \(2^3.4^2+3^2.5-40.1^{2023}=8.16+9.5-40.1=128+45-40=128+5=133\)
so sánh a và b
A=4/7+5+3/7 mũ 2+ 5/7 mũ ba+6/ 7 mũ 4
B=5/ 7 mũ 3+6/ 7 mũ 2+5/7 mũ 4+4/7+5
So sánh:
3 mũ 15 + 4 mũ 15 và 5 mũ 15
1.So sánh
a.3 mũ 10 và 5 mũ 30
b.5 mũ 303 và 2 mũ 4
c.5 mũ 35 và 2 mũ 4
giúp mk nhé ..thanks
a ) Ta có :
530 = ( 53 )10 = 12510
MÀ 12510 > 310 hay 530 > 310
Vậy 530 > 310
b ) TA CÓ :
24 = 16
5303 = 52 . 5301 = 25 . 5301
Mà 25 . 5301 > 16 Do đó 5303 > 24
Vậy 5303 > 24
c ) ( tương tự phần b )
quy đồng rồi so sánh các ohaan số sau
11/2 mũ 3 nhân 3 mũ 4 nhân 5 mũ 2 với 29/2 mũ 2 nhân 3 mũ 4 nhân 5 mũ 3
1/n và 1/n+1
A = \(\dfrac{11}{2^3.3^4.5^2}\) = \(\dfrac{11.5}{2^3.3^4.5^3}\) = \(\dfrac{55}{2^3.3^4.5^3}\)
B = \(\dfrac{29}{2^2.3^4.5^3}\) = \(\dfrac{29.2}{2^3.3^4.5^3}\) = \(\dfrac{58}{2^3.3^4.5^3}\)
A < B
so sánh mà ko tính giá trị
a) 64 mũ 150 và 4 mũ 450
b) 81 mũ 64 và 27 mũ 100
c) 125 mũ 1000 và 25 mũ 3000
d) 4 mũ 30 và 3 mũ 40
m) 2 mũ 5000 và 5 mũ 2000
h) 6 mũ 450 và 3 mũ 750
0) 333 mũ 444 và 444 mũ 333
`#3107.101107`
a)
`64^150` và `4^450`
Ta có:
`64^150 = (4^3)^150 = 4^(3*150) = 4^450`
Vì `450 = 450 => 4^450 = 4^450 => 64^150 = 4^450`
Vậy, `64^150 = 4^450`
b)
`81^64` và `27^100`
Ta có:
`81^64 = (3^4)^64 = 3^(4*64) = 3^256`
`27^100 = (3^3)^100 = 3^(3*100) = 3^300`
Vì `256 < 300 => 3^256 < 3^300 => 81^64 < 27^100`
Vậy, `81^64 < 27^100`
c)
`125^1000` và `25^3000`
Ta có:
`125^1000 = (5^3)^1000 = 5^(3*1000) = 5^3000`
Vì `5 < 25 => 5^3000 < 25^3000 => 125^1000 < 25^3000`
Vậy, `125^1000 < 25^3000`
d)
`4^30` và `3^40`
Ta có:
`4^30 = 4^(3*10) = (4^3)^10 = 64^10`
`3^40 = 3^(4*10) = (3^4)^10 = 81^10`
Vì `64 < 81 => 64^10 < 81^10 => 4^30 < 3^40`
Vậy, `4^30 < 3^40`
m)
`2^5000` và `5^2000`
Ta có:
`2^5000 = 2^(5*1000) = (2^5)^1000 = 32^1000`
`5^2000 = 5^(2*1000) = (5^2)^1000 = 25^1000`
Vì `32 > 25 => 32^1000 > 25^1000 => 2^5000 > 5^2000`
Vậy, `2^5000 > 5^2000`
h)
`6^450` và `3^750`
Ta có:
`6^450 = 6^(150*3) = (6^3)^150 = 216^150`
`3^750 = 3^(150*5) = (3^5)^150 = 243^150`
Vì `216 < 243 => 216^150 < 243^150 => 6^450 < 3^750`
Vậy, `6^450 < 3^750`
0)
`333^444` và `444^333`
Ta có:
`333^444 = 333^(4*111) = (333^4)^111 = (3^4 *111^4)^111 = 81^111 * 111^444`
`444^333 = 444^(3*111) = (444^3)^111 = (4^3 * 111^3)^111 = 64^111 * 111^333`
Vì `81 > 64;` `111^444 > 111^333`
`=> 81^111 * 111^444 > 64^111 * 111^333`
Vậy, `333^444 > 444^333.`
a) Ta có:
\(64^{150}=\left(2^6\right)^{150}=2^{900}\)
\(4^{450}=\left(2^2\right)^{450}=2^{900}\)
Mà: \(2^{900}=2^{900}\Rightarrow64^{150}=4^{450}\)
b) Ta có:
\(81^{64}=\left(3^4\right)^{64}=3^{256}\)
\(27^{100}=\left(3^3\right)^{100}=3^{300}\)
Mà: \(3^{300}>3^{256}\Rightarrow27^{100}>81^{64}\)
c) Ta có:
\(125^{1000}=\left(5^3\right)^{1000}=5^{3000}\)
Mà: \(25^{3000}>5^{3000}\Rightarrow25^{3000}>125^{1000}\)
d) Ta có:
\(4^{30}=\left(4^3\right)^{10}=64^{10}\)
\(3^{40}=\left(3^4\right)^{10}=81^{10}\)
Mà: \(81^{10}>64^{10}\Rightarrow3^{40}>4^{30}\)
m) Ta có:
\(2^{5000}=\left(2^5\right)^{1000}=32^{1000}\)
\(5^{2000}=\left(5^2\right)^{1000}=25^{1000}\)
Mà: \(25^{1000}< 32^{1000}\Rightarrow2^{5000}>5^{2000}\)
h) Ta có:
\(6^{450}=\left(6^3\right)^{150}=216^{150}\)
\(3^{750}=\left(3^5\right)^{150}=243^{150}\)
Mà: \(243^{150}>216^{150}\Rightarrow3^{750}>6^{450}\)
....
a) 4⁴⁵⁰ = (4³)¹⁵⁰ = 64¹⁵⁰
b) 81⁶⁴ = (3⁴)⁶⁴ = 3²⁵⁶
27¹⁰⁰ = (3³)¹⁰⁰ = 3³⁰⁰
Do 256 < 300 nên 3²⁵⁶ < 3³⁰⁰
Vậy 81⁶⁴ < 27¹⁰⁰
c) 125¹⁰⁰⁰ = (5³)¹⁰⁰⁰ = 5³⁰⁰⁰
Do 5 < 25 nên 5³⁰⁰⁰ < 25³⁰⁰⁰
Vậy 125¹⁰⁰⁰ < 25³⁰⁰⁰
d) 4³⁰ = (4³)¹⁰ = 64¹⁰
3⁴⁰ = (3⁴)¹⁰ = 81¹⁰
Do 64 < 81 nên 64¹⁰ < 81¹⁰
Vậy 4³⁰ < 3⁴⁰
m) 2⁵⁰⁰⁰ = (2⁵)¹⁰⁰⁰ = 32¹⁰⁰⁰
5²⁰⁰⁰ = (5²)¹⁰⁰⁰ = 25¹⁰⁰⁰
Do 32 > 25 nên 32¹⁰⁰⁰ > 25¹⁰⁰⁰
Vậy 2⁵⁰⁰⁰ > 5²⁰⁰⁰
h) 6⁴⁵⁰ = (6³)¹⁵⁰ = 216¹⁵⁰
3⁷⁵⁰ = (3⁵)¹⁵⁰ = 243¹⁵⁰
Do 216 < 243 nên 216¹⁵⁰ < 243¹⁵⁰
Vậy 6⁴⁵⁰ < 3⁷⁵⁰
o) 333⁴⁴⁴ = (333⁴)¹¹¹ = [(3.111)⁴]¹¹¹ = (3⁴.111⁴)¹¹¹ = (81.111⁴)¹¹¹
444³³³ = (444³)¹¹¹ = [(4.111)³]¹¹¹
= (4³.111³)¹¹¹ = (64.111³)¹¹¹
Do 81 > 64 ⇒ 81.111⁴ > 64.111⁴ (1)
Do 4 > 3 ⇒ 64.111⁴ > 64.111³ (2)
Từ (1) và (2) ⇒ 81.111⁴ > 64.111³
⇒ (81.111⁴)¹¹¹ > (64.111³)¹¹¹
Vậy 333⁴⁴⁴ > 444³³³
1.So sánh
a.3 mũ 40 và 5 mũ 30
b.5 mũ 303 và 2 mũ 4
Thanks
a) Ta có: \(3^{40}=\left(3^4\right)^{10}=81^{10}\)
\(5^{30}=\left(5^3\right)^{10}=125^{10}\)
Vì 125 > 81 => \(125^{10}>81^{10}\) => \(3^{40}>5^{30}\)
b) Ta có: \(5^{303}>5^4\) vì 303 > 4
Mà: \(5^4>2^4\) vì 5 > 2
=> \(5^{303}>2^4\)