Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Hoàng Đông Giang
Xem chi tiết
Phước Nguyễn
9 tháng 4 2016 lúc 10:49

Bài  \(1a.\)  Tìm  \(x,y,z\)  biết \(x^2+4y^2=2xy+1\)   \(\left(1\right)\)  và  \(z^2=2xy-1\)  \(\left(2\right)\)

Cộng  \(\left(1\right)\)  và  \(\left(2\right)\)  vế theo vế, ta được:

\(x^2+4y^2+z^2=4xy\)

\(\Leftrightarrow\)  \(x^2-4xy+4y^2+z^2=0\)

\(\Leftrightarrow\)  \(\left(x-2y\right)^2+z^2=0\)

Do  \(\left(x-2y\right)^2\ge0\)  và  \(z^2\ge0\)  với mọi  \(x,y,z\)

nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra  \(\left(x-2y\right)^2=0\)  và  \(z^2=0\)

\(\Leftrightarrow\)  \(^{x-2y=0}_{z^2=0}\)  \(\Leftrightarrow\)  \(^{x=2y}_{z=0}\)

Từ  \(\left(2\right)\), với chú ý rằng  \(x=2y\)  và  \(z=0\), ta suy ra:

\(2xy-1=0\)  \(\Leftrightarrow\)  \(2.\left(2y\right).y-1=0\)  \(\Leftrightarrow\)  \(4y^2-1=0\)  \(\Leftrightarrow\)  \(y^2=\frac{1}{4}\)  \(\Leftrightarrow\)  \(y=\frac{1}{2}\)  hoặc  \(y=-\frac{1}{2}\)

\(\text{*)}\)  Với  \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\)  thì  \(\left(2\right)\)  \(\Rightarrow\)  \(2.x.\frac{1}{2}-1=0\)  \(\Leftrightarrow\)  \(x=1\)

\(\text{*)}\)  Tương tự với trường hợp  \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)

Vậy, các cặp số  \(x,y,z\)  cần tìm là  \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)

\(b.\)  Vì  \(x+y+z=1\)  nên  \(\left(x+y+z\right)^2=1\)

\(\Leftrightarrow\)  \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\)  \(\left(3\right)\)

Mặt khác, ta lại có  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  \(\Rightarrow\)  \(xy+yz+xz=0\)  \(\left(4\right)\) (do  \(xyz\ne0\))

Do đó,  từ  \(\left(3\right)\) và \(\left(4\right)\)  \(\Rightarrow\)  \(x^2+y^2+z^2=1\)

Vậy,  \(B=1\)

Nguyền Thừa Huyền
9 tháng 4 2016 lúc 9:42

1a) x=1, y=1/2, z=0

Phước Nguyễn
9 tháng 4 2016 lúc 11:06

Ta có:

\(A=\frac{1}{x^2}+\frac{1}{y^2}=\frac{x^2+y^2}{\left(xy\right)^2}=\frac{x^2+y^2}{\left(x+y\right)^2}\)  (do  \(x+y=xy\))  \(\left(5\right)\)

Dễ dàng chứng minh được với mọi  \(x,y\in R\), ta luôn có:

\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)  \(\left(\text{*}\right)\)

Thật vậy, áp dụng bất đẳng thức Bunyakovsky cho hai bộ số  \(\left(1^2+1^2\right)\)  và  \(\left(x^2+y^2\right)\), ta được:

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(1.x+1.y\right)^2=\left(x+y\right)^2\)

Do đó,  \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\), hay  \(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)  \(\left(đpcm\right)\)

Vậy, bất đẳng thức \(\left(\text{*}\right)\)  hiển nhiên đúng với mọi  \(x,y\in R\), tức bđt  \(\left(\text{*}\right)\)  được chứng minh.

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\frac{1}{x}=\frac{1}{y}\)  \(\Leftrightarrow\)  \(x=y\)  

Khi đó,  từ  \(\left(\text{*}\right)\)  \(\Rightarrow\)  \(\frac{1}{\left(x+y\right)^2}\ge\frac{1}{2\left(x^2+y^2\right)}\)  (do  hai vế của bđt  \(\left(\text{*}\right)\)  cùng dấu  \(\left(+\right)\))

nên  \(\frac{x^2+y^2}{\left(x+y\right)^2}\ge\frac{x^2+y^2}{2\left(x^2+y^2\right)}=\frac{1}{2}\)  (vì  \(x^2+y^2>0\)  với mọi  \(x,y\in R\) và  \(x,y\ne0\))  \(\left(6\right)\)

\(\left(5\right);\)  \(\left(6\right)\)  \(\Rightarrow\)  \(A\ge\frac{1}{2}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(^{x+y=xy}_{x=y}\)  \(\Leftrightarrow\)  \(x=y=2\)

Vậy,  GTNN của  \(A=\frac{1}{2}\)

khoimzx
Xem chi tiết
nguyễn đình thành
Xem chi tiết
Trần Minh Phúc
Xem chi tiết
Kiệt Nguyễn
31 tháng 10 2020 lúc 21:51

Áp dụng bất đẳng thức AM - GM, ta được: \(2xy-4=x+y\ge2\sqrt{xy}\)

Đặt \(\sqrt{xy}=t\)thì ta có: \(2t^2-2t-4\ge0\Leftrightarrow2\left(t-2\right)\left(t+1\right)\ge0\Rightarrow t\ge2\)

\(\Rightarrow xy\ge4\)

\(P=xy+\frac{1}{x^2}+\frac{1}{y^2}\ge xy+\frac{2}{xy}=\left(\frac{2}{xy}+\frac{xy}{8}\right)+\frac{7xy}{8}\ge2\sqrt{\frac{2}{xy}.\frac{xy}{8}}+\frac{7.4}{8}=\frac{9}{2}\)

Đẳng thức xảy ra khi x = y = 2

Khách vãng lai đã xóa
Đặng Thanh Hường
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 12 2020 lúc 20:34

\(A=\dfrac{-\left(x^2+2xy+y^2\right)+4x^2+4xy+y^2}{x^2+2xy+y^2}=-1+\left(\dfrac{2x+y}{x+y}\right)^2\ge-1\)

\(A_{min}=-1\) khi \(2x+y=0\)

Nguyễn Thành Đạt
Xem chi tiết
Phan Nghĩa
21 tháng 2 2021 lúc 15:49

Từ giả thiết \(=>x+y=2xy\)

Áp dụng bđt Cô-si ta có : 

\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y\)

\(y^4+x^2\ge2\sqrt{y^4x^2}=2y^2x\)

Khi đó : \(C\le\frac{1}{2}\left[\frac{1}{xy\left(x+y\right)}+\frac{1}{xy\left(x+y\right)}\right]=\frac{1}{2}.\frac{2}{xy\left(x+y\right)}=\frac{1}{xy\left(x+y\right)}\)

đến đây dễ rồi ha

Khách vãng lai đã xóa
Phan Nghĩa
21 tháng 2 2021 lúc 15:56

oke làm tiếp 

Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}< =>2\ge\frac{4}{x+y}< =>x+y\ge2\)

Mặt khác \(C\le\frac{1}{xy\left(x+y\right)}=\frac{1}{\frac{\left(x+y\right)}{2}.\left(x+y\right)}=\frac{2}{\left(x+y\right)^2}\le\frac{1}{2}\)

Vậy GTLN của C = 1/2 đạt được khi x=y=1

Khách vãng lai đã xóa
Mashiro Rima
Xem chi tiết
Kaneki Ken
Xem chi tiết
Phùng Minh Quân
24 tháng 4 2020 lúc 18:01

hpt \(\Leftrightarrow\)\(\hept{\begin{cases}5\left(x+y\right)^2+\frac{2}{\left(x+y\right)^2}-12xy=\frac{251}{5}\\\frac{\left(x+y\right)^2+1}{x+y}=5-\left(x-y\right)\end{cases}}\) (*) 

đặt \(\left(a;b\right)=\left(x+y;x-y\right)\)\(\left(a\ne0\right)\)

hệ (*) \(\Leftrightarrow\)\(\hept{\begin{cases}5a^2+\frac{2}{a^2}-3\left(a^2-b^2\right)=\frac{251}{5}\\b=5-\frac{a^2+1}{a}\end{cases}}\Leftrightarrow\hept{\begin{cases}25a^4-150a^3+154a^2-150a+25=0\left(1\right)\\b=5-\frac{a^2+1}{a}\end{cases}}\)

pt (1) \(\Leftrightarrow\)\(\orbr{\begin{cases}a=\frac{1}{5}\Rightarrow b=\frac{-1}{5}\\a=5\Rightarrow b=\frac{-1}{5}\end{cases}}\)\(\Rightarrow\)\(\left(x;y\right)=\left\{\left(0;\frac{1}{5}\right);\left(\frac{12}{5};\frac{13}{5}\right)\right\}\)

Khách vãng lai đã xóa
Không Tên
Xem chi tiết
Phạm Thùy Linh
6 tháng 3 2017 lúc 20:17

mơn bn nhìu na!!!

Rion Hà
6 tháng 3 2017 lúc 20:20

hihi tks pạn nhìu nhoa

Trần Thiên Kim
7 tháng 3 2017 lúc 9:32

hay đó, cảm ơn luôn nha!~~ (dù ko lq :D)