\(\sqrt{a+b+c+2\sqrt{ac+bc}+\sqrt{a+b+c-2\sqrt{ac+bc}}}\) các bạn giúp mình rút gọn với ạ
Rút gọn: \(T=\sqrt{a+b+c+2\sqrt{ac+bc}}+\sqrt{a+b+c-2\sqrt{ac+bc}}\) với \(a,b,c>0\)
\(t^2=a+b+c+2\sqrt{ac+bc}+a+b+c-2\sqrt{ac+bc}+2\sqrt{\left(a+b+c+2\sqrt{ac+bc}\right)\left(a+b+c-2\sqrt{ac+bc}\right)}\)
\(T^2=2a+2b+2c+2\sqrt{a^2+b^2+c^2+2ab+2bc+2ac-4ac-4bc}\)
\(T^2=2a+2b+2c+\sqrt{a^2+b^2+c^2-2ac-2bc+2ab}\)
\(T^2=2a+2b+2c+\sqrt{\left(a+b-c\right)^2}\)
\(T^2=2a+2b+2c+a+b-c\) ( vì a,b,c> 0 )
\(T^2=3a+3b+c\Leftrightarrow t=\sqrt{3a+3b+c}\)
biết a,b,c là độ dài 3 cạnh của 1 tam giác. Rút gọn
\(\sqrt{a+b+c+2\sqrt{ac+bc}}+\sqrt{a+b+c-2\sqrt{ac+bc}}\)
Ta có : \(\sqrt{a+b+c+2\sqrt{ac+bc}}+\sqrt{a+b+c-2\sqrt{ac+bc}}=\sqrt{a+b+2\sqrt{c}.\sqrt{a+b}+c}+\sqrt{a+b-2\sqrt{c}.\sqrt{a+b}+c}=\sqrt{\left(\sqrt{a+b}+\sqrt{c}\right)^2}+\sqrt{\left(\sqrt{a+b}-\sqrt{c}\right)^2}\)\(=\sqrt{a+b}+\sqrt{c}+\left|\sqrt{a+b}-\sqrt{c}\right|=\sqrt{a+b}+\sqrt{c}+\left(\sqrt{a+b}-\sqrt{c}\right)=2\sqrt{a+b}\)(vì a,b,c là độ dài ba cạnh của tam giác nên \(a+b>c>0\Rightarrow\sqrt{a+b}>\sqrt{c}\))
2222222222222222222222222222222222222222222222222222222222222222222222222222222222
Đặt \(A=\sqrt{a+b+c+2\sqrt{ac+bc}}+\sqrt{a+b+c-2\sqrt{ac+bc}}\)
=> \(A^2=\left(\sqrt{a+b+c+2\sqrt{ac+bc}}+\sqrt{a+b+c-2\sqrt{ac+bc}}\right)^2\)
=>\(A^2=\left(a+b+c+2\sqrt{ab+bc}\right)+2\cdot\sqrt{a+b+c+2\sqrt{ab+bc}}\cdot\sqrt{a+b+c-2\sqrt{ab+bc}}+\left(a+b+c-2\sqrt{ab+bc}\right)\)
=>\(A^2=2a+2b+2c+2\cdot\sqrt{\left(\left(a+b+c\right)+2\sqrt{ab+bc}\right)\cdot\left(\left(a+b+c\right)-2\sqrt{ab+bc}\right)}\)
=>\(A^2=2a+2b+2c+2\cdot\sqrt{\left(a+b+c\right)^2-4ac-4bc}\)
=>\(A^2=2a+2b+2c+2\cdot\sqrt{\left(a+b-c\right)^2}\)
=>\(A^2=2a+2b+2c+2a+2b-2c=4a+4b=4\left(a+b\right)\)
=>\(A=\sqrt{A^2}=\sqrt{4\left(a+b\right)}=2\sqrt{a+b}\)
Cho các số thực dương \(a;b;c\) và thỏa mãn: \(a+b+c=1\). Chứng minh rằng :
\(\dfrac{a}{a+2.\sqrt{a+bc}}+\dfrac{b}{b+2.\sqrt{b+ac}}+\dfrac{c}{c+2.\sqrt{c+ab}}\le\dfrac{3}{5}\)
P/s: Em nhờ quý thầy cô và các bạn hỗ trợ và giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
\(\dfrac{a}{a+2\sqrt{\left(a+bc\right)}}=\dfrac{a}{a+2\sqrt{a\left(a+b+c\right)+bc}}=\dfrac{a}{a+2\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(=\dfrac{a}{a+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}\)
\(\le\dfrac{a}{5^2}\left(\dfrac{1}{a}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}\right)\)
\(=\dfrac{a}{25}\left(\dfrac{1}{a}+\dfrac{8}{\sqrt{\left(a+b\right)\left(a+c\right)}}\right)=\dfrac{1}{25}+\dfrac{8}{25}.\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
Tương tự:
\(\dfrac{b}{b+2\sqrt{b+ac}}\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\)
\(\dfrac{c}{c+2\sqrt{c+ab}}\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)
Cộng vế:
\(P\le\dfrac{3}{25}+\dfrac{4}{25}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{15}{25}=\dfrac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Cho a, b, c là các số thực dương thỏa mãn ab+bc+ac+abc = 4. CMR: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\le3\)
CÁC BẠN ƠI GIÚP MÌNH BÀI NÀY VỚI
Đặt \(x=\sqrt{bc};y=\sqrt{ca};z=\sqrt{ab}\)\(\Rightarrow x^2+y^2+z^2+xyz=4\)\(\Rightarrow\left(x+y+z\right)^2-4=2\left(xy+yz+zx\right)-xyz\)
\(\Rightarrow\left(x+y+z\right)^2-4\left(x+y-z\right)+4=\left(2-x\right)\left(2-y\right)\left(2-z\right)\)\(\le\left(\frac{6-x-y-z}{3}\right)^3\)
Đặt \(t=x+y+z\Rightarrow\left(t-6\right)^3+27\left(t^2-4t+4\right)\le0\)\(\Leftrightarrow\left(t-3\right)\left(t+6\right)^2\le0\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\left(đpcm\right)\)
Dấu '=' xảy ra <=> a=b=c=1
Mình chưa hiểu ở dòng thứ 3 tại sao bạn lại đánh giá đc nó nhỏ hơn hoặc bằng \(\left(\frac{6-x-y-z}{3}\right)^3\)
cho a,b,c là các số thực dương. Tìm GTLN của biểu thức
P=\(\dfrac{\sqrt{bc}}{a+2\sqrt{bc}}+\dfrac{\sqrt{ac}}{b+2\sqrt{ac}}+\dfrac{\sqrt{ba}}{c+2\sqrt{ba}}\)
\(P=\dfrac{1}{2}\left(\dfrac{2\sqrt{bc}}{a+2\sqrt{bc}}+\dfrac{2\sqrt{ac}}{b+2\sqrt{ac}}+\dfrac{2\sqrt{ab}}{c+2\sqrt{ab}}\right)\)
\(P=\dfrac{1}{2}\left(1-\dfrac{a}{a+2\sqrt{bc}}+1-\dfrac{b}{b+2\sqrt{ca}}+1-\dfrac{c}{c+2\sqrt{ab}}\right)\)
\(P=\dfrac{3}{2}-\dfrac{1}{2}\left(\dfrac{a}{a+2\sqrt{bc}}+\dfrac{b}{b+2\sqrt{ca}}+\dfrac{c}{c+2\sqrt{ab}}\right)\)
\(P\le\dfrac{3}{2}-\dfrac{1}{2}.\dfrac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{a+2\sqrt{bc}+b+2\sqrt{ca}+c+2\sqrt{ab}}=\dfrac{3}{2}-\dfrac{1}{2}.\dfrac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}=1\)
\(P_{max}=1\) khi \(a=b=c\)
1/Cho Q=\(\frac{6-a-\sqrt{a}}{\sqrt{a}+3}\)với a≥0
a) Rút gọn
b) Tìm giá trị của a để Q có GTLN
2/Cho a,b,c>0. Rút gọn biểu thức
N=\(\sqrt{a+b+c+2\sqrt{ac+bc}}+\sqrt{a+b+c-2\sqrt{ac+bc}}\)
1/ \(Q=\frac{\left(2-\sqrt{a}\right)\left(\sqrt{a}+3\right)}{\sqrt{a}+3}=2-\sqrt{a}\)
Do \(\sqrt{a}\ge0\Rightarrow2-\sqrt{a}\le2\Rightarrow Q_{max}=2\) khi \(a=0\)
2/
\(N=\sqrt{a+b+2\sqrt{\left(a+b\right)c}+c}+\sqrt{a+b-2\sqrt{\left(a+b\right)c}+c}\)
\(=\sqrt{\left(\sqrt{a+b}+\sqrt{c}\right)^2}+\left(\sqrt{a+b}-\sqrt{c}\right)^2\)
\(=\sqrt{a+b}+\sqrt{c}+\left|\sqrt{a+b}-\sqrt{c}\right|\)
TH1: Nếu \(a+b\ge c\Rightarrow\sqrt{a+b}-\sqrt{c}\ge0\)
\(\Rightarrow Q=\sqrt{a+b}+\sqrt{c}+\sqrt{a+b}-\sqrt{c}=2\sqrt{a+b}\)
TH2: Nếu \(a+b< c\Rightarrow\sqrt{a+b}-\sqrt{c}< 0\)
\(\Rightarrow Q=\sqrt{a+b}+\sqrt{c}+\sqrt{c}-\sqrt{a+b}=2\sqrt{c}\)
\(\sqrt{a+b+c+2\sqrt{ac+bc}}+\sqrt{a+b+c-2\sqrt{ac+bc}}\)
\(\sqrt{a+b+c+2\sqrt{ac+bc}}+\sqrt{a+b+c-2\sqrt{ac+bc}}\)
\(=\)\(\sqrt{\left(\sqrt{a+b}\right)^2+2\sqrt{a+b}\sqrt{c}+\left(\sqrt{c}\right)^2}+\sqrt{\left(\sqrt{a+b}\right)^2-2\sqrt{a+b}\sqrt{c}+\left(\sqrt{c}\right)^2}\)
\(=\)\(\sqrt{\left(a+b+c\right)^2}+\sqrt{\left(a+b-c\right)^2}\)
\(=\)\(\left|a+b+c\right|+\left|a+b-c\right|\)
Đến đây e ko bít làm tiếp -_-
Chúc chị học tốt ~
Bài : a):Chứng minh: \(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)
b): Tìm GTNN của: P= \(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ac+2a^2}\)biết a,b,c > 0 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\)
Giúp mình với các cậu!!!
a/ Nếu (a + b) < 0 thì bất đẳng thức đúng
Với (a + b) \(\ge0\)thì ta có
\(2a^2+ab+2b^2\ge\frac{5}{4}\left(a^2+2ab+b^2\right)\)
\(\Leftrightarrow3a^2-6ab+3b^2\ge0\)
\(\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)
b/ Áp dụng BĐT BCS :
\(1=\left(1.\sqrt{a}+1.\sqrt{b}+1.\sqrt{c}\right)^2\le3\left(a+b+c\right)\Rightarrow a+b+c\ge\frac{1}{3}\)
Áp dụng câu a/ :
\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)
\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\)
\(\sqrt{2c^2+ac+2a^2}\ge\frac{\sqrt{5}}{2}\left(a+c\right)\)
\(\Rightarrow P\ge\frac{\sqrt{5}}{2}.2\left(a+b+c\right)\ge\frac{\sqrt{5}}{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{9}\)
Vậy min P = \(\frac{\sqrt{5}}{3}\) khi a=b=c=1/9
cho a,b,c>0 . hãy rút gọn biểu thức
Q = \(\sqrt{a+b+c+2\sqrt{ab+bc}}\) + \(\sqrt{a+b+c+2\sqrt{ac+bc}}\)
Lời giải:
\(Q=\sqrt{a+b+c+2\sqrt{ab+bc}}+\sqrt{a+b+c+2\sqrt{ac+bc}}\)
\(=\sqrt{(a+c)+b+2\sqrt{b(a+c)}}+\sqrt{(a+b)+c+2\sqrt{c(a+b)}}\)
\(=\sqrt{(\sqrt{a+c}+\sqrt{b})^2}+\sqrt{(\sqrt{a+b}+\sqrt{c})^2}\)
\(=\sqrt{a+c}+\sqrt{b}+\sqrt{a+b}+\sqrt{c}\)