Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Linh
Xem chi tiết

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 15:33

2: A=n^2+3n+2=(n+1)(n+2)

Để A là số nguyên tố thì n+1=1 hoặc n+2=2

=>n=0

Tran Thi Xuan
Xem chi tiết
Nguyễn Tiến Sâm
11 tháng 9 2021 lúc 21:09
Tui chịu Nhé Bye Bye Các bạn
Khách vãng lai đã xóa
Lừa Song Phắn
Xem chi tiết
Kyle Thompson
Xem chi tiết
Jenner
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 9 2021 lúc 22:05

a. Ta có: \(2^p+1=\left(2^p-2\right)+3\)

Mà theo định lý Ferma nhỏ: \(2^p-2⋮p\Rightarrow3⋮p\Rightarrow p=3\)

b.

 - Với \(n=3k\Rightarrow2^n+1=2^{3k}+1=8^k+1\)

Mà \(8\equiv1\left(mod7\right)\Rightarrow8^k+1\equiv2\left(mod7\right)\Rightarrow\) ko chia hết cho 7

- Với \(n=3k+1\Rightarrow2^n+1=2^{3k+1}+1=2.8^k+1\)

\(2.8^k+1\equiv3\left(mod7\right)\Rightarrow\) ko chia hết cho 7

- Với \(n=3k+2\Rightarrow2^n+1=2^{3k+2}+1=4.8^k+1\)

\(4.8^k+1\equiv5\left(mod7\right)\Rightarrow\) không chia hết cho 7

Vậy \(2^n+1\) ko chia hết cho 7 với mọi n

Phạm Minh Phú
Xem chi tiết
Nguyễn Linh Chi
4 tháng 10 2019 lúc 21:38

Câu hỏi của Nguyễn Phương Thảo - Toán lớp 7 - Học toán với OnlineMath

=> \(n+2=p^2\) là số chính phương.

lê duy mạnh
4 tháng 10 2019 lúc 21:38

ta có p^2=(m+n)(m-1)

vì m+n>m-1

>0

m

+n=p^2

m-1=1

suy ra m=2=>n+2=p^2 là số chính phuopwng

Minz Ank
Xem chi tiết
Nguyễn Hoàng Minh
28 tháng 12 2021 lúc 21:11

Ta có \(2^{p-1}\equiv1\left(\text{mod }p\right)\)

Ta có \(n.2^n\equiv m\left(p-1\right).2^{m\left(p-1\right)}\left(\text{mod }p\right)\Rightarrow n.2^n\equiv-m\equiv1\left(\text{mod }p\right)\)

\(\Rightarrow m=kp-1\left(k\in N\text{*}\right)\)

Vậy với \(n=\left(kp-1\right)\left(p-1\right)\left(k\in N\text{*}\right)\) thì \(n.2^n-1⋮p\)

Lê Hoàng Nguyên
Xem chi tiết
Lê Song Phương
2 tháng 11 2023 lúc 19:31

Bạn chỉ cần cho \(n\) lẻ thì \(p^{n+1}\) chính phương rồi nhé.

N.T.M.D
Xem chi tiết