cho số nguyên tố p và số tự nhiên n≥2 thoả mãn p-1⋮n và n3-1⋮p. Cm n+p clas số chính phương
2. Tìm các số tự nhiên n thoả mãn n2 +3n+2 là số nguyên tố.
3. Tìm các số tự nhiên n sao cho 2n +34 là số chính phương.
4. Chứng minh rằng tổng S = 14 +24 +34 +···+1004 không là số chính phương.
5. Tìm các số nguyên dương a ≤ b ≤ c thoả mãn abc,a+b+c,a+b+c+2 đều là các số nguyên tố
Mik gấp
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
2: A=n^2+3n+2=(n+1)(n+2)
Để A là số nguyên tố thì n+1=1 hoặc n+2=2
=>n=0
1) Tìm các số tự nhiên n để số 3^n+19 là số chính phương
2) Cho m,n là 2 số nguyên dương thỏa mãn m+n-1 là 1 số nguyên tố và m+n-1 là 1 ước của 2(m^2+n^2)-1 CMR m=n
Cho plaf số nguyên tố , n là số tự nhiên lớn hơn 1 thỏa mãn p-1 chia hết cho n và n3-1 chia hết cho p . Chứng minh rằng : 4p-3 là số chính phương
Tìm các số tự nhiên n thỏa mãn 3n+1 và 4n+1 đều là các số chính phương và 8n + 3 là số nguyên tố
a) Tìm số nguyên tố p thoả mãn \(2^p+1⋮p\)
b) Chứng minh rằng không có số tự nhiên n nào thoả mãn \(2^n+1⋮7\)
a. Ta có: \(2^p+1=\left(2^p-2\right)+3\)
Mà theo định lý Ferma nhỏ: \(2^p-2⋮p\Rightarrow3⋮p\Rightarrow p=3\)
b.
- Với \(n=3k\Rightarrow2^n+1=2^{3k}+1=8^k+1\)
Mà \(8\equiv1\left(mod7\right)\Rightarrow8^k+1\equiv2\left(mod7\right)\Rightarrow\) ko chia hết cho 7
- Với \(n=3k+1\Rightarrow2^n+1=2^{3k+1}+1=2.8^k+1\)
\(2.8^k+1\equiv3\left(mod7\right)\Rightarrow\) ko chia hết cho 7
- Với \(n=3k+2\Rightarrow2^n+1=2^{3k+2}+1=4.8^k+1\)
\(4.8^k+1\equiv5\left(mod7\right)\Rightarrow\) không chia hết cho 7
Vậy \(2^n+1\) ko chia hết cho 7 với mọi n
Cho m, n là các số tự nhiên và p là số nguyên tố thõa mãn: \(\frac{p}{m-1}=\frac{m+n}{p}\). Chứng minh rằng khi đó n+2 là số chính phương.
Câu hỏi của Nguyễn Phương Thảo - Toán lớp 7 - Học toán với OnlineMath
=> \(n+2=p^2\) là số chính phương.
ta có p^2=(m+n)(m-1)
vì m+n>m-1
>0
m
+n=p^2
m-1=1
suy ra m=2=>n+2=p^2 là số chính phuopwng
Cho p là số nguyên tố lớn hơn 2. Chứng minh rằng có vô số số tự nhiên n thoả mãn n.2^n - 1 chia hết cho p.
Ta có \(2^{p-1}\equiv1\left(\text{mod }p\right)\)
Ta có \(n.2^n\equiv m\left(p-1\right).2^{m\left(p-1\right)}\left(\text{mod }p\right)\Rightarrow n.2^n\equiv-m\equiv1\left(\text{mod }p\right)\)
\(\Rightarrow m=kp-1\left(k\in N\text{*}\right)\)
Vậy với \(n=\left(kp-1\right)\left(p-1\right)\left(k\in N\text{*}\right)\) thì \(n.2^n-1⋮p\)
tìm p là số nguyên tố và n là số tự nhiên sao cho p^(n+1) là số chính phương
Bạn chỉ cần cho \(n\) lẻ thì \(p^{n+1}\) chính phương rồi nhé.
1.Tìm số nguyên n sao cho n^2+3 là số chính phương
2.Tìm số tự nhiên n để n^2+3n+2 là số nguyên tố
3.Tìm số nguyên tố p để p+1 là số chính phương