\(tan\left(\frac{\rho}{4}\left(cosx-sinx\right)\right)=1\)
giải pt : 1, \(\dfrac{\left(1-cosx\right)^2+\left(1+sinx\right)^2}{4\left(1-sinx\right)}-tan^2sinx=\dfrac{1}{2}\left(1+sinx\right)+tan^2x\)
\(1.\left(sinx+cosx\right)^3+sinxcosx-1=0\)
\(2.\left(sinx+cosx\right)^4-3sin2x-1=0\)
\(3.sin^3x+cos^3x+2\left(sinx+cosx\right)-3sin2x=0\)
\(4.\left(sinx-cosx\right)^3=1+sinxcosx\)
5.\(sinx+cosx+2+tanx+cotx+\frac{1}{sinx}+\frac{1}{cosx}=0\)
1.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
Pt trở thành:
\(t^3+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow2t^3+t^2-3=0\)
\(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\)
\(\Leftrightarrow t=1\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sin2x=2sinx.cosx=t^2-1\end{matrix}\right.\)
Pt trở thành:
\(t^4-3\left(t^2-1\right)-1=0\)
\(\Leftrightarrow t^4-3t^2+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t^2=1\\t^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}1+sin2x=1\\1+sin2x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sin2x=1\end{matrix}\right.\)
\(\Leftrightarrow...\)
3.
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)+2\left(sinx+cosx\right)-6sinx.cosx=0\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
Pt trở thành:
\(t\left(1-\frac{t^2-1}{2}\right)+2t-3\left(t^2-1\right)=0\)
\(\Leftrightarrow-t^3-6t^2+7t+6=0\)
Nghiệm của pt bậc 3 này rất xấu, chắc bạn ghi ko đúng đề bài
rút gọn các biểu thức lượng giác sau:
\(\frac{sin^2x}{cosx\left(1+tanx\right)}-\frac{cos^2x}{sinx\left(1+cotx\right)}=sinx-cosx\)
\(\left(tanx+\frac{cosx}{1+sinx}\right)\left(cotx+\frac{sinx}{1+cosx}\right)=\frac{1}{sinx.cosx}\)
đề bài đầy đủ: rút gọn các biểu thức lượng giác sau trên điều kiện xác định của chúng:
\(\frac{sin^2x}{cosx+cosx.\frac{sinx}{cosx}}-\frac{cos^2x}{sinx+sinx.\frac{cosx}{sinx}}=\frac{sin^2x}{sinx+cosx}-\frac{cos^2x}{sinx+cosx}=\frac{sin^2x-cos^2x}{sinx+cosx}\)
\(=\frac{\left(sinx+cosx\right)\left(sinx-cosx\right)}{sinx+cosx}=sinx-cosx\)
\(\left(\frac{sinx}{cosx}+\frac{cosx}{1+sinx}\right)\left(\frac{cosx}{sinx}+\frac{sinx}{1+cosx}\right)=\left(\frac{sinx+sin^2x+cos^2x}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}\right)\)
\(=\left(\frac{sinx+1}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+1}{sinx\left(1+cosx\right)}\right)=\frac{1}{sinx.cosx}\)
Chứng minh đẳng thức sau :
a, \(\left(\frac{tan^2x-1}{2tanx}\right)^2\) - \(\frac{1}{4sin^2x.cos^2x}\) = -1
b, \(\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}\) = 1 + tan2x
c, \(\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cotx\right)}=sinx-cosx\)
d, \(\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\frac{1}{sinx.cosx}\)
e, cos2x.(cos2x + 2sin2x + sin2x.tan2x) = 1
\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)
\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)
b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)
=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)
d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)
\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)
=\(\frac{1}{cosx.sinx}=VP\)
e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)
c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)
=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)
\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)
Đây nha bạn
Chứng minh|
a) \(\frac{1+sin2x}{sinx+cosx}-\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=sinx\)
b) \(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\frac{3}{4}-\frac{\sqrt{2}}{2}sin\left(2x+\frac{\pi}{4}\right)\)
\(\frac{sin^2x+cos^2x+2sinx.cosx}{sinx+cosx}-\left(1-tan^2\frac{x}{2}\right).cos^2\frac{x}{2}\)
\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\)
\(=sinx+cosx-cosx=sinx\)
\(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)\right)^2\)
\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\left(\frac{1}{2}-\frac{1}{2}sin2x\right)^2\)
\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}-\frac{1}{2}sin2x+\frac{1}{4}sin^22x\)
\(=\frac{1}{4}-\frac{1}{2}\left(cos2x+sin2x\right)+\frac{1}{4}\left(cos^22x+sin^22x\right)\)
\(=\frac{3}{4}-\frac{\sqrt{2}}{2}sin\left(2x+\frac{\pi}{4}\right)\)
giải phương trình sau:
a,\(\frac{sin2x+2cosx-sinx-1}{tanx+\sqrt{3}}=0\)
b,\(\frac{\left(1+sinx+cos2x\right)sinx\left(x+\frac{\pi}{4}\right)}{1+tanx}=\frac{1}{\sqrt{2}}cosx\)
c,\(\frac{\left(1-sin2x\right)cosx}{\left(1+sin2x\right)\left(1-sinx\right)}=\sqrt{3}\)
d,\(\frac{1}{sinx}+\frac{1}{sin\left(x-\frac{3\pi}{2}\right)}=4sin\left(\frac{7\pi}{4}-x\right)\)
giải các pt
a) \(sin\left(\frac{3\pi}{10}-\frac{x}{2}\right)=\frac{1}{2}sin\left(\frac{\pi}{10}+\frac{3x}{2}\right)\)
b) \(4\left(sin^2x+\frac{1}{sin^2x}\right)+4\left(sinx+\frac{1}{sinx}\right)=7\)
c) \(9\left(\frac{2}{cosx}+cosx\right)+2\left(cos^2x+\frac{4}{cos^2x}\right)=1\)
d) \(2\left(cos^2x+\frac{4}{cos^2x}\right)+9\left(\frac{2}{cosx}-cosx\right)=1\)
a/
\(\Leftrightarrow cos\left(\frac{x}{2}+\frac{\pi}{5}\right)=\frac{1}{2}sin\left(\frac{3x}{2}+\frac{\pi}{10}\right)\)
Đặt \(\frac{x}{2}+\frac{\pi}{5}=a\Rightarrow\frac{x}{2}=a-\frac{\pi}{5}\Rightarrow\frac{3x}{2}=3a-\frac{3\pi}{5}\)
Pt trở thành:
\(cosa=\frac{1}{2}sin\left(3a-\frac{3\pi}{5}+\frac{\pi}{10}\right)\)
\(\Leftrightarrow cosa=\frac{1}{2}sin\left(3a-\frac{\pi}{2}\right)\)
\(\Leftrightarrow cosa=-\frac{1}{2}sin\left(\frac{\pi}{2}-3a\right)=-\frac{1}{2}cos3a\)
\(\Leftrightarrow cos3a+2cosa=0\)
\(\Leftrightarrow4cos^3a-3cosa+2cosa=0\)
\(\Leftrightarrow4cos^3a-cosa=0\)
\(\Leftrightarrow cosa\left(4cos^2a-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosa=0\\cosa=\frac{1}{2}\\cosa=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}cos\left(\frac{x}{2}+\frac{\pi}{5}\right)=0\\cos\left(\frac{x}{2}+\frac{\pi}{5}\right)=\frac{1}{2}\\cos\left(\frac{x}{2}+\frac{\pi}{5}\right)=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{2}+\frac{\pi}{5}=\frac{\pi}{2}+k\pi\\\frac{x}{2}+\frac{\pi}{5}=\pm\frac{\pi}{3}+k2\pi\\\frac{x}{2}+\frac{\pi}{5}=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=...\) (5 nghiệm bạn tự biến đổi)
b/
ĐKXĐ: ...
Đặt \(sinx+\frac{1}{sinx}=a\Rightarrow sin^2x+\frac{1}{sin^2x}=a^2-2\)
Pt trở thành:
\(4\left(a^2-2\right)+4a=7\)
\(\Leftrightarrow4a^2+4a-15=0\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx+\frac{1}{sinx}=\frac{3}{2}\\sinx+\frac{1}{sinx}=-\frac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-\frac{3}{2}sinx+1=0\left(vn\right)\\sin^2x+\frac{5}{2}sinx+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
c/
ĐKXĐ: ...
Đặt \(cosx+\frac{2}{cosx}=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2-4\)
Pt trở thành:
\(9a+2\left(a^2-4\right)=1\)
\(\Leftrightarrow2a^2+9a-9=0\)
Pt này nghiệm xấu quá bạn :(
d/ĐKXĐ: ...
Đặt \(\frac{2}{cosx}-cosx=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2+4\)
Pt trở thành:
\(2\left(a^2+4\right)+9a-1=0\)
\(\Leftrightarrow2a^2+9a+7=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=-\frac{7}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2}{cosx}-cosx=-1\\\frac{2}{cosx}-cosx=-\frac{7}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-cos^2x+cosx+2=0\\-cos^2x+\frac{7}{2}cosx+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\\cosx=4\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
giải các phương trình sau:
a, \(\sqrt{3}sinx+cosx=\frac{1}{cosx}\)
b,\(3tan^2x\left(x-\frac{\pi}{2}\right)=2\left(\frac{1-sinx}{sinx}\right)\)
c,\(1+sinx+cosx+tanx=0\)
d,\(\frac{1}{cosx}+\frac{1}{sinx}=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
\(tan\left[\dfrac{\pi}{4}\left(cosx-sinx\right)\right]=1\)