Tìm GTLN:
J = \(\frac{2010}{4x+20\sqrt{x}+30}\)
K = \(x+\sqrt{2-x}\)
M = \(1+\sqrt{6x-x^2-7}\)
Tìm GTLN của các biểu thức sau:
a) \(\frac{2010}{4x+20\sqrt{x}+30}\)
b) \(x+\sqrt{2-x}\)
c) \(1+\sqrt{6x-x^2-7}\)
Tim GTLN cua bieu thuc
\(J=\frac{2010}{4x+20\sqrt{x}+30}\)
\(J=\frac{2010}{4x+20\sqrt{x}+30}\)
\(=\frac{2010}{\left(2\sqrt{x}\right)^2+2.2\sqrt{x}.5+25+5}\)
\(=\frac{2010}{\left(2\sqrt{x}+5\right)^2+5}\)
\(A_{max}\Leftrightarrow\frac{2010}{\left(2\sqrt{x}+5\right)^2+5}\)lớn nhất
\(\Rightarrow\left(2\sqrt{x}+5\right)^2+5\)nhỏ nhất
\(\Rightarrow\left(2\sqrt{x}+5\right)^2\)nhỏ nhất
Mà \(2\sqrt{x}+5\ge5\Rightarrow2\sqrt{x}+5=5\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\)
Với x = 0 \(\Rightarrow J_{max}=\frac{2010}{4.0+20\sqrt{0}+30}=\frac{2010}{30}=67\)
Tìm x :
h/ \(\sqrt{x+5}-10=-4\)
i/ \(\sqrt{x-5}+2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)
j/ \(3\sqrt{2x}+\frac{1}{7}\sqrt{98x}-\sqrt{72x}+4=0\)
k/ \(\sqrt{4x^2-20}-\frac{1}{3}\sqrt{x^2-5}+\sqrt{\frac{9x^2-45}{16}}-\frac{1}{2}\sqrt{\frac{25x^2-125}{36}}=4\)
l/ \(\sqrt{4x+4}+\sqrt{9x+9}-\sqrt{x+1}=4\)
m/ \(\sqrt{16\left(x+1\right)}+\sqrt{4x+4}=16-\sqrt{x+1}+\sqrt{9x+9}\)
Giúp mk với nhé mn
h)
ĐKXĐ: $x\geq -5$
PT $\Leftrightarrow \sqrt{x+5}=6$
$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)
i) ĐKXĐ: $x\geq 5$
PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)
\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)
j)
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$
$\Leftrightarrow -2\sqrt{2x}+4=0$
$\Leftrightarrow \sqrt{2x}=2$
$\Rightarrow x=2$ (thỏa mãn)
k) ĐK: $x^2\geq 5$
PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$
$\Leftrightarrow 2\sqrt{x^2-5}=4$
$\Leftrightarrow \sqrt{x^2-5}=2$
$\Rightarrow x^2-5=4$
$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)
l) ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$
$\Leftrightarrow 4\sqrt{x+1}=4$
$\Leftrightarrow \sqrt{x+1}=1$
$\Rightarrow x+1=1$
$\Rightarrow x=0$
m)
ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$
$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$
$\Leftrightarrow 4\sqrt{x+1}=16$
$\Leftrightarrow \sqrt{x+1}=4$
$\Rightarrow x=15$ (thỏa mãn)
Cu Hùng lên mà lấy bài này
1 Cho Biểu thức \(\frac{x^2-\sqrt{x}}{x+\sqrt{x+1}}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a, Rút gon A
b,tìm GTNN của A
Tìm x để \(B=\frac{2\sqrt{x}}{A}\) là số nguyên
2 giải pt
a,\(\sqrt{x-2}+\sqrt{y+2019}+\sqrt{z-2010}=\frac{1}{2}\left(x+y+z\right)\)
b,\(\left(x-5\right)^{2010}+\left(x-6\right)^{2010}=1\)
3 Cho các số o âm x,y,z thõa mãn \(x+y+z\le3\) . Tìm GTLn \(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(x+y+z\right)\)
4 giải pt nghiệm nguyên
\(4x^2-8y^3+2z^2+4x-4=0\)
5 tín số nguyên a,b t/m \(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
6giải pt \(\sqrt{x^2+1-2x}+\sqrt{x^2-4x+4}=\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
\(\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\)
7 Tìm GTNN , GTLN \(M=2x+\sqrt{5-x^2}\)
8 cho\(x,y,z\in(0,1]\)
CM \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
\(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}=\frac{a^2+a+1}{\left(a+1\right)}\Rightarrow\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}=\frac{2013^2}{2013}=2013\)
\(\Rightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=|x-1|+|x-2|=2013\)
giải tiếp nha
Tìm GTLN của biểu thức :
B = \(\dfrac{2010}{4x+20\sqrt{x}+30}\)
\(B=\dfrac{2010}{4x+20\sqrt{x}+30}\)
\(B=\dfrac{2010}{\left(2\sqrt{x}\right)^2+2\cdot2\sqrt{x}\cdot5+25+5}\)
\(B=\dfrac{2010}{\left(2\sqrt{x}+5\right)^2+5}\)
Ta có: \(\left(2\sqrt{x}+5\right)^2+5\ge5\)
\(\Rightarrow B=\dfrac{2010}{\left(2\sqrt{x}+5\right)^2+5}\le\dfrac{2010}{5}=402\)
Vậy: \(B_{min}=402\)
2.tìm x
a)\(\sqrt{x^2-6x+9}\)
b)\(\sqrt{x^2-2x+1}\)
c)\(\sqrt{4x+12}-3\sqrt{x+3}+7\sqrt{9x+27}=20\)
d)\(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=6\)
a) \(\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)
\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x
⇒x∈\(R\)
b) \(\sqrt{x^2-2x+1}\)
\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)
\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x
⇒x∈\(R\)
-timg gtln của C=\(\frac{1}{\sqrt{x^2-4x+5}}\)
-tìm gtln của B=5-\(\sqrt{x^2-6x+14^{ }}\)
Có: \(C=\frac{1}{\sqrt{x^2-4x+5}}\)
\(\Leftrightarrow C=\frac{1}{\sqrt{\left(x-2\right)^2+1}}\)\(\le1\)
Vậy Cmin=1 \(\Leftrightarrow x=2\)
Có: \(B=5-\sqrt{x^2-6x+14}\)
\(\Leftrightarrow B=5-\sqrt{\left(x-3\right)^2+5}\) \(\le5-\sqrt{5}\)
Vậy \(B_{min}=5-\sqrt{5}\Leftrightarrow x=3\)
Tìm GTLN
a) A = \(\frac{1 }{x-\sqrt{x}+1}\)
b) B = \(\sqrt{4x-x^2+21}\)
c) C = \(1+\sqrt{-9x^2+6x}\)
d) D = \(\sqrt{x-2}+\sqrt{4-x}\)
a) Ta có: \(x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\left(\forall x\right)\)
=> \(A=\frac{1}{x-\sqrt{x}+1}\le\frac{1}{\frac{3}{4}}=\frac{4}{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(\sqrt{x}-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{4}\)
Vậy Max(A) = 4/3 khi x = 1/4
b) \(B=\sqrt{4x-x^2+21}=\sqrt{-\left(x^2-4x+4\right)+25}\)
\(=\sqrt{25-\left(x-2\right)^2}\le\sqrt{25}=5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy Max(B) = 5 khi x = 2
c) \(C=1+\sqrt{-9x^2+6x}=1+\sqrt{-\left(9x^2-6x+1\right)+1}\)
\(=1+\sqrt{1-\left(3x-1\right)^2}\le1+\sqrt{1}=2\)
Dấu "=" xảy ra khi: \(\left(3x-1\right)=0\Rightarrow x=\frac{1}{3}\)
Vậy Max(C) = 2 khi x = 1/3
d) Ta có: \(D=\sqrt{x-2}+\sqrt{4-x}\)
=> \(D^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\left(1^2+1^2\right)\left(x-2+4-x\right)\) ( BĐT Bunhia)
\(=2.2=4\)
=> \(D\le2\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x-2=4-x\Rightarrow x=3\)
Vậy Max(D) = 2 khi x = 3
a) 2sqrt(25(x - 3)) - 1/2 * sqrt(4x - 12) + 1/7 * sqrt(49(x - 3)) = 20 b) sqrt(x ^ 2 - 6x + 9) = 2