(2/4x-9/16)x(1/3+-3/5:x)=0
giải phương trình
1)\(\sqrt{9\left(x-1\right)}=21\)
2)\(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)
3)\(\sqrt{2x}-\sqrt{50}=0\)
4)\(\sqrt{4x^2+4x+1}=6\)
5)\(\sqrt{\left(x-3\right)^2}=3-x\)
1) \(\sqrt[]{9\left(x-1\right)}=21\)
\(\Leftrightarrow9\left(x-1\right)=21^2\)
\(\Leftrightarrow9\left(x-1\right)=441\)
\(\Leftrightarrow x-1=49\Leftrightarrow x=50\)
2) \(\sqrt[]{1-x}+\sqrt[]{4-4x}-\dfrac{1}{3}\sqrt[]{16-16x}+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}+\sqrt[]{4\left(1-x\right)}-\dfrac{1}{3}\sqrt[]{16\left(1-x\right)}+5=0\)
\(\)\(\Leftrightarrow\sqrt[]{1-x}+2\sqrt[]{1-x}-\dfrac{4}{3}\sqrt[]{1-x}+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}\left(1+3-\dfrac{4}{3}\right)+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}.\dfrac{8}{3}=-5\)
\(\Leftrightarrow\sqrt[]{1-x}=-\dfrac{15}{8}\)
mà \(\sqrt[]{1-x}\ge0\)
\(\Leftrightarrow pt.vô.nghiệm\)
3) \(\sqrt[]{2x}-\sqrt[]{50}=0\)
\(\Leftrightarrow\sqrt[]{2x}=\sqrt[]{50}\)
\(\Leftrightarrow2x=50\Leftrightarrow x=25\)
1) \(\sqrt{9\left(x-1\right)}=21\) (ĐK: \(x\ge1\))
\(\Leftrightarrow3\sqrt{x-1}=21\)
\(\Leftrightarrow\sqrt{x-1}=7\)
\(\Leftrightarrow x-1=49\)
\(\Leftrightarrow x=49+1\)
\(\Leftrightarrow x=50\left(tm\right)\)
2) \(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\) (ĐK: \(x\le1\))
\(\Leftrightarrow\sqrt{1-x}+2\sqrt{1-x}-\dfrac{4}{3}\sqrt{1-x}+5=0\)
\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}+5=0\)
\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}=-5\) (vô lý)
Phương trình vô nghiệm
3) \(\sqrt{2x}-\sqrt{50}=0\) (ĐK: \(x\ge0\))
\(\Leftrightarrow\sqrt{2x}=\sqrt{50}\)
\(\Leftrightarrow2x=50\)
\(\Leftrightarrow x=\dfrac{50}{2}\)
\(\Leftrightarrow x=25\left(tm\right)\)
4) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\left(ĐK:x\ge-\dfrac{1}{2}\right)\\2x+1=-6\left(ĐK:x< -\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tm\right)\\x=-\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)
5) \(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow x-3=3-x\)
\(\Leftrightarrow x+x=3+3\)
\(\Leftrightarrow x=\dfrac{6}{2}\)
\(\Leftrightarrow x=3\)
1) => 9(x-1)=\(21^2\)
=> 9x-9=441
=> 9x=450
=> x=50
2)=>\(\sqrt{1-x}\) + \(\sqrt{4\left(1-x\right)}\)-\(\dfrac{1}{3}\sqrt{16\left(1-x\right)}\)+5=0
=>\(\sqrt{1-x}\)\(\left(1+2-\dfrac{1}{3}.4\right)\)+5=0
=>\(\dfrac{5}{3}\sqrt{1-x}\) +5=0
=>\(\sqrt{1-x}\)=-3
Phuong trinh vo nghiem
1) 3(x-5)(2x+9)+3x-15=0
2) (x2-16)(12-4x)=0
3) (9-x2)(4x-8)=0
4) (8-x3)(5x-125)=0
5) 4x=8
1)=>3(x-5)(2x+9)+3(x-5)=0=>(x-5)(6x+30)
=>x-5=0=>x=5
6x+30=0=>x=-5
2)=>x^2-16=0=>x=+-4
12-4x=0=>x=3
3)=>9-x^2=0=>x=+-3
4x-8=0=>x=2
4)=>8-x^3=0=>x=3
5^x-125=0=>x=2
5)=>2^x.2^x=8=>2^2x=8=>2x=3=>x=1,5
1) (3x-6)(x+5)+4(x-2)=0
2) 3(x-5)(2x+9)+3x-15=0
3) (x2-16)(12-4x)=0
4) (9-x2)(4x-8)=0
5) (8-x3)(5x-125)=0
6) 4x=8
bài 3 tìm x
a)(2x+3)^2-(2x+1)(2x-1)=32
b)(4x+3)(4x-3)-(4x-5)^2=46
c)(x+4)^2+(x+3)(x-3)-5(x+1)(x-1)=16
d)92x-1)^2+(x+3^2-5(x+7)(x-7)=0
e)25x^2-9=0
BT2: Tìm x 2, 3x(x-4)+2x-8=0 3, 4x(x-3)+x^2-9=0 4, x(x-1)-x^2+3x=0 5, x(2x-1)-2x^2+5x=16
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
(Bài 14; Tìm x biết
1) x ^ 2 - 9 = 0
4) 4x ^ 2 - 4 = 0
7) (3x + I) ^ 2 - 16 = 0
10) (x + 3) ^ 2 - x ^ 2 = 45
2) 25 - x ^ 2 = 0
5) 4x ^ 2 - 36 = 0
8) (2x - 3) ^ 2 - 49 = 0
11) (5x - 4) ^ 2 - 49x ^ 2 = 0
3) - x ^ 2 + 36 = 0
6) 4x ^ 2 - 36 = 0
9) (2x - 5) ^ 2 - x ^ 2 = 0
12) 16 * (x - 1) ^ 2 - 25 = 0
1, \(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy \(x\) \(\in\) {-3; 3}
7, (3\(x\) + 1)2 - 16 = 0
(3\(x\) + 1 - 4)(3\(x\) + 1 + 4) = 0
(3\(x\) - 3).(3\(x\) + 5) = 0
\(\left[{}\begin{matrix}3x-3=0\\3x+5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=3\\3x=-5\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=\dfrac{-5}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {1; - \(\dfrac{5}{3}\)}
10, (\(x\) + 3)2 - \(x^2\) = 45
[(\(x\) + 3) - \(x\)].[(\(x\) + 3) + \(x\)] = 45
3.(2\(x\) + 3) = 45
2\(x\) + 3 = 15
2\(x\) = 12
\(x\) = 6
Tìm x
a) 9(4x+3)^2 = 16(3x-5)^2
b) (x^3 - x^2)-4x^2 + 8x -4 = 0
g) x^5+ x^4 + x^3 + x^2 + x + 1 = 0
Giúp mình với
Tìm x
1. (3x+5)(4-3x)=0
2. 9(3x-2)=x(2-3x)
3. 25x^2 -2=0
4. x^2- 25=6x-9
5. (2x-1)^2-(2x+5)(2x-5)=18
6. x^3-8=(x-2)^3
7. x^3-4x^2+4x=0
8. x^2- 25+2(x+5)=0
9. 2(x^2+8x+16)- x^2+4=0
10. x^2(x-2)+7x=14
(3x+5)(4-3x)=0
3x+5 =0 hoặc 4-3x=0
3x=-5 hoặc 3x=-4
x=-5/3 hoặc x=-4/3
9(3x-2)=x(2-3x)
9(3x-2)-x(3x-2)=0
(3x-2)(9-x)=0
3x-2=0 hoặc 9-x=0
3x=2 hoặc x= -9
x =2/3 hoặc x=-9
vậy x =2/3 ; x= -9
25x^2 - 2=0
(5x)^2 -√2^2=0
(5x-√2)(5x+√2)=0
5x=√2 hoặc 5x = -√2
x=√2/5 hoặc x= -√2/5
vậy x=√2/5 ; x=-√2/5
Tìm x a) (x-1/3).(x+2/3)=0 b) (3/4x-9/16).(1,5+(-3):x)=0
\(a,\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{3}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\\ b,\left(\dfrac{3}{4}x-\dfrac{9}{16}\right)\left(1,5+\dfrac{-3}{x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{16}\\-\dfrac{3}{x}=-1,5=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=2\end{matrix}\right.\)
a: \(\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b: \(\left(\dfrac{3}{4}x-\dfrac{9}{16}\right)\left(\dfrac{1}{5}+\left(-3\right):x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{16}\\\left(-3\right):x=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{16}:\dfrac{3}{4}=\dfrac{9}{16}\cdot\dfrac{4}{3}=\dfrac{3}{4}\\x=\left(-3\right):\dfrac{-1}{5}=15\end{matrix}\right.\)