Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Đức Hà
Xem chi tiết
Hoàng Thị Thu Thủy
Xem chi tiết
Akai Haruma
6 tháng 1 lúc 22:36

Lời giải:

Cho $b=a+4$ ta có:

$ab+4=a(a+4)+4=a^2+4a+4=(a+2)^2$ là số chính phương.

Vậy với mọi số tự nhiên $a$, tồn tại số tự nhiên $b=a+4$ để $ab+4$ luôn là số chính phương.

Nguyễn Thị Hà Anh
Xem chi tiết
Phạm Thị Thúy Hiền
29 tháng 8 2020 lúc 18:30

Đáp án: theo đề bài :

ab+4=x^2

<=>x^2-4=ab

<=>x^2-2^2=ab =>(x+2)(x-2)=ab

Khách vãng lai đã xóa
KCLH Kedokatoji
29 tháng 8 2020 lúc 19:52

Với b=a+4 thì ab+4 là số chính phương.

Chứng minh: Với b=4 thì

ab+4= a(a+4) +4 =a2+4a+4=(a+2)2

Khách vãng lai đã xóa
Đinh Hoàng Nam
13 tháng 10 2020 lúc 19:32

vì sao m=a+2 vậy ad

Khách vãng lai đã xóa
Nguyen Kieu Chi
Xem chi tiết
Spindle31
27 tháng 12 2015 lúc 21:05

Tick nha

Này nhé:
Ta có:
Giả sử: ab + 4 = A2

<=>a2 - 4 = ab

<=> A2 - 22 = ab

<=> (A+2)(A-2) = ab : luôn đúng với mọi a,b

=> Đpcm

Nhớ tick đó!

chi
Xem chi tiết
Tạ Tú Quỳnh Vy
Xem chi tiết
Yen Nhi
20 tháng 11 2021 lúc 20:21

Answer:

Ta đặt: \(ab+4=m^2\)

\(\Rightarrow ab=m^2-4=\left(m-2\right).\left(m+2\right)\)

\(\Rightarrow b=\frac{\left(m-2\right).\left(m+2\right)}{a}\)

Ta có: \(m=a+2\)

\(\Rightarrow a=m-2\)

\(\Rightarrow b=\frac{a.\left(a+4\right)}{a}=a+4\)

Vậy với mọi số nguyên a luôn tồn tại \(b=a+4\) để \(ab+4\) là số chính phương

Khách vãng lai đã xóa
Balulu
Xem chi tiết
Lê Hiển Vinh
17 tháng 8 2016 lúc 10:13

Đặt \(ab+4=m^2\)\(\left(m\in N\right)\)
\(\Rightarrow ab=m^2-4=\left(m-2\right)\left(m+2\right)\)

\(\Rightarrow b=\frac{\left(m-2\right)\left(m+2\right)}{a}\)
Ta có:  \(m=a+2\Rightarrow m-2=a\)
\(\Rightarrow b=\frac{a\left(a+4\right)}{a}=a+4\)
Vậy với mọi số tự nhiên \(a\) luôn tồn tại \(b=a+4\) để \(ab+4\) là số chính phương.

Bùi Thị Vân
17 tháng 8 2016 lúc 11:19

Vinh nên sửa lại là chọn m = a + 2 thì bài toán sẽ chặt chẽ hơn.

Kudo Shinichi
25 tháng 7 2019 lúc 10:16

đặt ab+4=m^2(m\(\in n\))

\(\Rightarrow\)ab=\(m^2-4=\left(m-2\right)\left(m+2\right)\)

\(\Rightarrow b=\frac{\left(m-2\right)\left(m+2\right)}{a}\)

Ta có:\(m=a+2\Rightarrow m-2=a\)

\(\Rightarrow b=\frac{a\left(a+4\right)}{a}=a+4\)

với mọi số tự nhiên là a luôn luôn tồn tại b= a+4 để ab +4 là số chính phương

Mai Thu Uyên
Xem chi tiết
Transformers
Xem chi tiết
soyeon_Tiểu bàng giải
17 tháng 8 2016 lúc 21:32

Giả sử ab + 4 là số chính phương

Ta có: ab + 4 = x2

=> ab = x2 - 4

=> ab = (x - 2).(x + 2)

Giử sử a > b => a = x + 2; b = x - 2

=> a - b = (x + 2) - (x - 2)

=> a - b = x + 2 - x + 2

=> a - b = 4

=> với a - b = 4 thì ab + 4 là số chính phương

=> điều giả sử là đúng

Oo Bản tình ca ác quỷ oO
17 tháng 8 2016 lúc 21:30

ta có: giả sử ab + 4 = A2

<=> A2 - 4 = ab

<=> A2 - 22 = ab

<=> (A - 2) (A + 2) = ab : luôn đúng với mọi a,b

=> ĐCCM

t i c k nha!! 5675675677687697843543543534456567567876876876897